
Control System Toolbox™

User’s Guide

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Control System Toolbox™ User’s Guide

© COPYRIGHT 2001–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2001 Online only New for Version 5.1 (Release 12.1)
July 2002 Online only Revised for Version 5.2 (Release 13)
June 2004 Online only Revised for Version 6.0 (Release 14)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.0 (Release 2006a)
September 2006 Online only Revised for Version 7.1 (Release 2006b)
March 2007 Online only Revised for Version 8.0 (Release 2007a)
September 2007 Online only Revised for Version 8.0.1 (Release 2007b)
March 2008 Online only Revised for Version 8.1 (Release 2008a)
October 2008 Online only Revised for Version 8.2 (Release 2008b)
March 2009 Online only Revised for Version 8.3 (Release 2009a)
September 2009 Online only Revised for Version 8.4 (Release 2009b)
March 2010 Online only Revised for Version 8.5 (Release 2010a)
September 2010 Online only Revised for Version 9.0 (Release 2010b)
April 2011 Online only Revised for Version 9.1 (Release 2011a)
September 2011 Online only Revised for Version 9.2 (Release 2011b)
March 2012 Online only Revised for Version 9.3 (Release 2012a)
September 2012 Online only Revised for Version 9.4 (Release 2012b)
March 2013 Online only Revised for Version 9.5 (Release 2013a)

Contents

Linear System Modeling

Linear System Model Objects

1
What Are Model Objects? . 1-2
Model Objects Represent Linear Systems 1-2
About Model Data . 1-2

Control System Modeling with Model Objects 1-4

Types of Model Objects . 1-7

Dynamic System Models . 1-9

Static Models . 1-11

Numeric Models . 1-12
Numeric Linear Time Invariant (LTI) Models 1-12
Identified LTI Models . 1-12
Identified Nonlinear Models . 1-13

Generalized Models . 1-14
Generalized and Uncertain LTI Models 1-14
Control Design Blocks . 1-14
Generalized Matrices . 1-16

Models with Fixed Coefficients . 1-18
Numeric LTI Models . 1-18
Transfer Functions . 1-19
State-Space Models . 1-20
Frequency Response Data (FRD) Models 1-22
PID Controllers . 1-23

v

Models with Tunable Coefficients 1-27
Tunable Generalized LTI Models . 1-27
Modeling Tunable Components . 1-28
Modeling Control Systems with Tunable Components 1-28
Internal Structure of Generalized Models 1-29

Using Model Objects . 1-32

Simulink Block for LTI Systems . 1-33

References . 1-35

Model Creation

2
SISO Model Creation . 2-2
Transfer Function Model Using Numerator and
Denominator Coefficients . 2-2

Transfer Function Model Using Zeros, Poles, and Gain . . . 2-3
State-Space Model . 2-4
Frequency-Response Model . 2-5
Proportional-Integral-Derivative (PID) Controller 2-6

Discrete-Time Model Creation . 2-10
Discrete-Time Transfer Function Model 2-10
Discrete-Time Proportional-Integral-Derivative (PID)
Controller . 2-11

MIMO Model Creation . 2-14
MIMO Transfer Function Model . 2-14
MIMO State-Space Model . 2-15
MIMO Descriptor State-Space Model 2-17
MIMO Frequency Response Data Model 2-18
Select Input/Output Pairs in MIMO Models 2-20

Models with Time Delays . 2-21
Modeling Time Delays . 2-21
First Order Plus Dead Time Model 2-22

vi Contents

Input and Output Delay in State-Space Model 2-23
Transport Delay in MIMO Transfer Function 2-25
Closing Feedback Loops with Time Delays 2-26
Discrete-Time Transfer Function with Time Delay 2-29
Time-Delay Approximation . 2-29
Time-Delay Approximation in Continuous-Time Open-Loop
Model . 2-30

Time-Delay Approximation in Continuous-Time
Closed-Loop Model . 2-34

Approximate Different Delays with Different Approximation
Orders . 2-39

Convert Time Delay to Factors of 1/z in Discrete-Time
Model . 2-41

Fractional Time-Delay Approximation in Discrete-Time
Model . 2-43

Frequency Response Data (FRD) Model with Time
Delay . 2-45

Internal Delays . 2-47

Models with Parametric or Tunable Coefficients 2-53
Tunable Low-Pass Filter . 2-53
Tunable Second-Order Filter . 2-54
State-Space Model with Both Fixed and Tunable
Parameters . 2-55

Control System with Tunable Components 2-56

Model Arrays . 2-59
Model Arrays . 2-59
One-Dimensional Model Array with Single Parameter
Variation . 2-62

Select Models from Array . 2-63
Array With Variations in Two Parameters 2-66
Sample a Tunable (Parametric) Model for Parameter
Studies . 2-68

vii

Working with Linear Models

Data Manipulation

3
Model Properties . 3-2
Model Properties . 3-2
Specify Model Properties at Model Creation 3-2
Examine and Specify Properties of an Existing Model 3-3

Extract Model Coefficients . 3-5
Functions for Extracting Model Coefficients 3-5
Extracting Coefficients of Different Model Type 3-5
Extract Numeric Model Data and Time Delay 3-6
Extract PID Gains from Transfer Function 3-7

Attach Metadata to Models . 3-9
Specify Model Time Units . 3-9
Interconnect Models with Different Time Units 3-10
Specify Frequency Units of Frequency-Response Data
Model . 3-10

Extract Subsystems of Multi-Input, Multi-Output (MIMO)
Models . 3-11

Specify and Select Input and Output Groups 3-12

Query Model Characteristics . 3-14
Query Model Dynamics . 3-14
Query Array Size . 3-15

Customize Model Display . 3-17
Configure Transfer Function Display Variable 3-17
Configure Display Format of Transfer Function in
Factorized Form . 3-18

viii Contents

Model Interconnections

4
Why Interconnect Models? . 4-2

Catalog of Model Interconnections 4-3

Arithmetic Operations . 4-5

Numeric Model of SISO Feedback Loop 4-6

Tunable Model of SISO Feedback Loop 4-8

Multi-Loop Control System . 4-10

MIMO Control System . 4-13

MIMO Feedback Loop . 4-16

How the Software Determines Properties of Connected
Models . 4-20

Precedence Rules That Determine Model Type 4-22

Recommended Model Type for Building Block
Diagrams . 4-23

Model Transformation

5
Conversion Between Model Types 5-2
Explicit Conversion Between Model Types 5-2
Automatic Conversion Between Model Types 5-2
Recommended Working Representation 5-3
Convert PID Controller to Transfer Function 5-4

ix

Get Current Value of Generalized Model by Model
Conversion . 5-4

Discretize a Compensator . 5-6

Improve Accuracy of Discretized System with Time
Delay . 5-11

Convert Discrete-Time System to Continuous Time . . . 5-16

Continuous-Discrete Conversion Methods 5-19
Choosing a Conversion Method . 5-19
Zero-Order Hold . 5-20
First-Order Hold . 5-22
Impulse-Invariant Mapping . 5-23
Tustin Approximation . 5-24
Zero-Pole Matching Equivalents . 5-27

Upsample a Discrete-Time System 5-29

Choosing a Resampling Command 5-33

Why Simplify Models? . 5-34

Cancellation Versus Approximation 5-35

Approximate Model with Lower-Order Model 5-37

Choose a Low-Order Approximation Method 5-42

Approximate Model with Unstable or Near-Unstable
Pole . 5-47

Eliminate States by Pole-Zero Cancellation 5-51

x Contents

Linear Analysis

Time Domain Analysis

6
Choosing a Time-Domain Analysis Command 6-2

Time-Domain Response Data and Plots 6-3

System Characteristics on Response Plots 6-6

Numeric Values of Time-Domain System
Characteristics . 6-10

Time-Domain Responses of Discrete-Time Model 6-12

Time-Domain Responses of MIMO Model 6-15

Time-Domain Responses of Multiple Models 6-17

Joint Time- and Frequency-Domain Analysis 6-20

Response from Initial Conditions 6-26

Analysis of Systems with Time Delays 6-29
Considerations to Keep in Mind when Analyzing Systems
with Internal Time Delays . 6-32

Frequency Domain Analysis

7
Choosing a Frequency-Domain Analysis Command . . . 7-2

Frequency Response of a SISO System 7-3

xi

Frequency Response of a MIMO System 7-5

System Characteristics on Response Plots 7-9

Numeric Values of Frequency-Domain Characteristics
of SISO Model . 7-12

Pole and Zero Locations . 7-15

Assessing Gain and Phase Margins 7-18

Analyzing Control Systems with Delays 7-32

Analyzing the Response of an RLC Circuit 7-48

Sensitivity Analysis

8
Plant Model with Single-Parameter Variation 8-2

Plant Model with Multiple-Parameter Variation 8-4

Study Parameter Variation by Sampling Tunable
Model . 8-6

Sensitivity of Control System to Time Delays 8-8

xii Contents

Control Design

PID Controller Design

9
PID Controller Design at the Command Line 9-2

Designing Cascade Control System with PI
Controllers . 9-8

Single-Input, Single-Output Control Design

10
Getting Started with the SISO Design Tool 10-2

Customization

Preliminaries

11
Terminology . 11-2

Property and Preferences Hierarchy 11-3

Ways to Customize Plots . 11-5

Setting Toolbox Preferences

12
Toolbox Preferences Editor . 12-2

xiii

Overview of the Toolbox Preferences Editor 12-2
Opening the Toolbox Preferences Editor 12-2

Units Pane . 12-4

Style Pane . 12-7

Options Pane . 12-8

SISO Tool Pane . 12-9

Setting Tool Preferences

13
Introduction . 13-2

LTI Viewer Preferences Editor . 13-3
Opening the LTI Viewer Preference Editor 13-3
Units Pane . 13-4
Style Pane . 13-6
Options Pane . 13-7
Parameters Pane . 13-8

Graphical Tuning Window Preferences Editor 13-9
Opening the Graphical Tuning Window Preferences
Editor . 13-9

Units Pane . 13-10
Time Delays Pane . 13-11
Style Pane . 13-12
Options Pane . 13-15
Line Colors Pane . 13-16

xiv Contents

Customizing Response Plot Properties

14
Introduction . 14-2

Customizing Response Plots Using the Response Plots
Property Editor . 14-3
Opening the Property Editor . 14-3
Overview of Response Plots Property Editor 14-4
Labels Pane . 14-6
Limits Pane . 14-6
Units Pane . 14-7
Style Pane . 14-16
Options Pane . 14-17
Editing Subplots Using the Property Editor 14-18

Customizing Response Plots Using Plot Tools 14-19
Properties You Can Customize Using Plot Tools 14-19
Opening and Working with Plot Tools 14-20
Example of Changing Line Color Using Plot Tools 14-20

Customizing Response Plots from the Command
Line . 14-23
Overview of Customizing Plots from the Command Line . . 14-23
Obtaining Plot Handles . 14-26
Obtaining Plot Options Handles . 14-27
Examples of Customizing Plots from the Command Line . . 14-30
Properties and Values Reference . 14-33
Property Organization Reference . 14-47

Customizing Plots Inside the SISO Design Tool 14-48
Overview of Customizing SISO Design Tool Plots 14-48
Root Locus Property Editor . 14-48
Open-Loop Bode Property Editor . 14-52
Open-Loop Nichols Property Editor 14-55
Prefilter Bode Property Editor . 14-57

xv

Design Case Studies

15
Design Yaw Damper for Jet Transport 15-2
Overview of this Case Study . 15-2
Creating the Jet Model . 15-2
Computing Open-Loop Eigenvalues 15-4
Open-Loop Analysis . 15-5
Root Locus Design . 15-8
Washout Filter Design . 15-13

Hard-Disk Read/Write Head Controller 15-19
Overview of this Case Study . 15-19
Creating the Read/Write Head Model 15-19
Model Discretization . 15-20
Adding a Compensator Gain . 15-22
Adding a Lead Network . 15-23
Design Analysis . 15-26

LQG Regulation: Rolling Mill Case Study 15-30
Overview of this Case Study . 15-30
Process and Disturbance Models . 15-30
LQG Design for the x-Axis . 15-33
LQG Design for the y-Axis . 15-40
Cross-Coupling Between Axes . 15-42
MIMO LQG Design . 15-45

Kalman Filtering . 15-49
Overview of this Case Study . 15-49
Discrete Kalman Filter . 15-50
Steady-State Design . 15-51
Time-Varying Kalman Filter . 15-57
Time-Varying Design . 15-58
References . 15-62

xvi Contents

Reliable Computations

16
Scaling State-Space Models . 16-2
Why Scaling Is Important . 16-2
When to Scale Your Model . 16-2
Manually Scaling Your Model . 16-3

Using the SISO Design Tool and the LTI
Viewer

SISO Design Tool

17
SISO Design Tool Overview . 17-2

Opening the SISO Design Tool . 17-4

Using the SISO Design Task Node 17-5
The SISO Design Task Node . 17-5
SISO Design Task Node Menu Bar 17-5

Using the SISO Design Task in the Controls &
Estimation Tools Manager . 17-12
Architecture . 17-12
Compensator Editor . 17-19
Graphical Tuning . 17-20
Analysis Plots . 17-24
Automated Tuning . 17-25

SISO Design Task Graphical Tuning Window 17-43

Using the Graphical Tuning Window Menu Bar 17-45
Overview of the Graphical Tuning Window Menu Bar 17-45
File . 17-45
Edit . 17-48

xvii

View . 17-49
Analysis . 17-50
Tools . 17-51
Window . 17-55
Help . 17-55

Using the Graphical Tuning Window Toolbar 17-57

Using the Right-Click Menus in the Graphical Tuning
Window . 17-58
Overview of the Right-Click Menus 17-58
Add Pole/Zero . 17-59
Delete Pole/Zero . 17-62
Edit Compensator . 17-63
Gain Target . 17-63
Show . 17-63
Multimodel Display . 17-64
Design Requirements . 17-64
Grid . 17-77
Full View . 17-77
Properties . 17-78
Select Compensator . 17-79
Status Pane . 17-79

LTI Viewer for SISO Design Task Design
Requirements . 17-80
Overview of LTI Viewer Design Requirements 17-80
Available Design Requirements in the LTI Viewer 17-80
Example: Time Domain Requirement 17-81

LTI Viewer

18
LTI Viewer Overview . 18-2

Using the Right-Click Menu in the LTI Viewer 18-4
Overview of the Right-Click Menu . 18-4
Setting Characteristics of Response Plots 18-4
Adding Design Requirements . 18-9

xviii Contents

Importing, Exporting, and Deleting Models in the LTI
Viewer . 18-12
Importing Models . 18-12
Exporting Models . 18-13
Deleting Models . 18-14

Selecting Response Types . 18-16
Methods for Selecting Response Types 18-16
Right Click Menu: Plot Type . 18-16
Plot Configurations Window . 18-16
Line Styles Editor . 18-18

Analyzing MIMO Models . 18-20
Overview of Analyzing MIMO Models 18-20
Array Selector . 18-21
I/O Grouping for MIMO Models . 18-23
Selecting I/O Pairs . 18-24

Customizing the LTI Viewer . 18-26
Overview of Customizing the LTI Viewer 18-26
LTI Viewer Preferences Editor . 18-26

Index

xix

xx Contents

Linear System Modeling

• Chapter 1, “Linear System Model Objects”

• Chapter 2, “Model Creation”

1

Linear System Model
Objects

• “What Are Model Objects?” on page 1-2

• “Control System Modeling with Model Objects” on page 1-4

• “Types of Model Objects” on page 1-7

• “Dynamic System Models” on page 1-9

• “Static Models” on page 1-11

• “Numeric Models” on page 1-12

• “Generalized Models” on page 1-14

• “Models with Fixed Coefficients” on page 1-18

• “Models with Tunable Coefficients” on page 1-27

• “Using Model Objects” on page 1-32

• “Simulink Block for LTI Systems” on page 1-33

• “References” on page 1-35

1 Linear System Model Objects

What Are Model Objects?

In this section...

“Model Objects Represent Linear Systems” on page 1-2

“About Model Data” on page 1-2

Model Objects Represent Linear Systems
In Control System Toolbox™, System Identification Toolbox™, and Robust
Control Toolbox™ software, you represent linear systems as model objects.
Model objects are specialized data containers that encapsulate model data and
other attributes in a structured way. Model objects allow you to manipulate
linear systems as single entities rather than keeping track of multiple data
vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or
multiple-input, multiple-output (MIMO) systems. You can represent both
continuous- and discrete-time linear systems.

The main families of model objects are:

• Numeric Models — Basic representation of linear systems with fixed
numerical coefficients. This family also includes identified models that
have coefficients estimated with System Identification Toolbox software.

• Generalized Models — Representations that combine numeric
coefficients with tunable or uncertain coefficients. Generalized models
support tasks such as parameter studies or compensator tuning using
Robust Control Toolbox tuning commands.

About Model Data
The data encapsulated in your model object depends on the model type you
use. For example:

• Transfer functions store the numerator and denominator coefficients

• State-space models store the A, B, C, and D matrices that describe the
dynamics of the system

1-2

What Are Model Objects?

• PID controller models store the proportional, integral, and derivative gains

Other model attributes stored as model data include time units, names for the
model inputs or outputs, and time delays. For more information about setting
and retrieving model attributes, see “Model Attributes”.

Note All model objects are MATLAB® objects, but working with them does
not require a background in object-oriented programming. To learn more
about objects and object syntax, see “Classes in the MATLAB Language” in
the MATLAB documentation.

Concepts • “Control System Modeling with Model Objects” on page 1-4
• “Types of Model Objects” on page 1-7

1-3

1 Linear System Model Objects

Control System Modeling with Model Objects
Model objects can represent individual components of a control architecture,
such as the plant, actuators, sensors, or controllers. You can connect model
objects to build aggregate models of block diagrams that represent the
combined response of multiple elements.

For example, the following control system contains a prefilter F, a plant G,
and a controller C, arranged in a single-loop configuration. The model also
includes a representation of sensor dynamics, S.

�
�

�������� �
�

	���

���

You can represent each of the components as a model object. You do not
need to use the same type of model object for each component. For example,
represent the plant G as a zero-pole-gain (zpk) model with a double pole at s =
–1; C as a PID controller, and F and S as transfer functions:

G = zpk([],[-1,-1],1);
C = pid(2,1.3,0.3,0.5);
S = tf(5,[1 4]);
F = tf(1,[1 1]);

You can then combine these elements build models that represent your
control system or the control system as a whole. For example, create the
open-loop response SGC:

open_loop = S*G*C;

To build a model of the unfiltered closed-loop response, use the feedback
command:

T = feedback(G*C,S);

1-4

Control System Modeling with Model Objects

To model the entire closed-loop system response from r to y, combine T with
the filter transfer function:

Try = T*F;

The results open_loop, T, and Try are also linear model objects. You can
operate on them with Control System Toolbox control design and analysis
commands. For example, plot the step response of the entire system:

step(Try)

When you combine Numeric LTI models, the resulting Numeric LTI models
represent the aggregate model. The resulting models do not retain the
original data from the combined components. For example, T does not
separately keep track of the dynamics of the components G, C, and S that are
combined to create T.

Related
Examples

• “Numeric Model of SISO Feedback Loop” on page 4-6
• “Multi-Loop Control System” on page 4-10
• “MIMO Control System” on page 4-13

1-5

1 Linear System Model Objects

Concepts • “Types of Model Objects” on page 1-7

1-6

Types of Model Objects

Types of Model Objects
The following diagram illustrates the relationships between the types of
model objects in Control System Toolbox, Robust Control Toolbox, and System
Identification Toolbox software. Model types that begin with id require
System Identification Toolbox software. Model types that begin with u require
Robust Control Toolbox software. All other model types are available with
Control System Toolbox software.

�������	
�
���	����

�������	������	������

�������
���	������

��
���
��
��	
�
	
�
	��	

�������
�������	������	������

���� ��

!��������

��
�������
��
�������
��
�������
�
��
������
	
��
������
	�

���
	��
�	��

�����
�������	������	������

���� ��

!��������

�����

�����
�������
��������

"���#���$��	����

"�������%��	���	������

���� ��	���&��	!��������

!��������	���

�����
�����	

���
���	

������

����

"�������%��	��������

���� ��

!��������

������'���
���	������

�!��#��	����

�����	����

������'���
���������	������

	�����

	������

	����

	����

	��

	��

	��	

	���

	���

(���)	�����
����
���

The diagram illustrates the following two overlapping broad classifications
of model object types:

1-7

1 Linear System Model Objects

• Dynamic System Models vs. Static Models — In general, Dynamic
System Models represent systems that have internal dynamics, while
Static Models represent static input/output relationships.

• Numeric Models vs. Generalized Models— Numeric Models are the
basic numeric representation of linear systems with fixed coefficients.
Generalized Models represent systems with tunable or uncertain
components.

Concepts • “What Are Model Objects?” on page 1-2
• “Dynamic System Models” on page 1-9
• “Static Models” on page 1-11
• “Numeric Models” on page 1-12
• “Generalized Models” on page 1-14

1-8

Dynamic System Models

Dynamic System Models
Dynamic System Models generally represent systems that have internal
dynamics or memory of past states (such as integrators).

Most commands for analyzing linear systems, such as bode, margin, and
ltiview, work on most Dynamic System Model objects. For Generalized
Models, analysis commands use the current value of tunable parameters and
the nominal value of uncertain parameters.

The following table lists the Dynamic System Models.

Model Family Model Types

tf

zpk

ss

frd

pid

Numeric LTI models — Basic
numeric representation of linear
systems

pidstd

idtf

idss

idfrd

idgrey

idpoly

Identified LTI models —
Representations of linear systems
with tunable coefficients, whose
values can be identified using
measured input/output data.

idproc

idnlarx

idnlhw

Identified nonlinear models —
Representations of nonlinear
systems with tunable coefficients,
whose values can be identified using
input/output data. Limited support
for commands that analyze linear
systems.

idnlgrey

1-9

1 Linear System Model Objects

Model Family Model Types

genss

genfrd

uss

Generalized LTI models —
Representations of systems that
include tunable or uncertain
coefficients

ufrd

ltiblock.gain

ltiblock.tf

ltiblock.ss

ltiblock.pid

ltiblock.pid2

ultidyn

udyn

Dynamic Control Design Blocks
— Tunable, uncertain, or switch
components for constructing models
of control systems

loopswitch

Concepts • “Numeric Linear Time Invariant (LTI) Models” on page 1-12
• “Identified LTI Models” on page 1-12
• “Identified Nonlinear Models” on page 1-13
• “Generalized and Uncertain LTI Models” on page 1-14
• “Control Design Blocks” on page 1-14

1-10

Static Models

Static Models
Static Models represent static input/output relationships and generalize the
notions of matrix and numeric array to parametric or uncertain arrays. You
can use static models to create parametric or uncertain expressions, and
to construct Generalized LTI models whose coefficients are parametric or
uncertain expressions. The Static Models family includes:

• Tunable parameters (realp objects)

• Generalized matrices (genmat objects)

• Uncertain parameters and matrices (ureal, ucomplex, ucomplexm)
(requires Robust Control Toolbox software)

• Uncertain matrices (umat) objects (requires Robust Control Toolbox
software)

For more information about using these objects to create parametric models,
see “Models with Tunable Coefficients” on page 1-27. For information about
creating uncertain static models, see “Uncertain Real Parameters” and
“Uncertain Matrices” in the Robust Control Toolbox documentation.

1-11

1 Linear System Model Objects

Numeric Models

Numeric Linear Time Invariant (LTI) Models
Numeric LTI models are the basic numeric representation of linear systems
or components of linear systems. Use numeric LTI models for modeling
dynamic components, such as transfer functions or state-space models, whose
coefficients are fixed, numeric values. You can use numeric LTI models for
linear analysis or control design tasks.

The following table summarizes the available types of numeric LTI models.

Model Type Description

tf Transfer function model in polynomial form

zpk Transfer function model in zero-pole-gain
(factorized) form

ss State-space model

frd Frequency response data model

pid Parallel-form PID controller

pidstd Standard-form PID controller

Identified LTI Models
Identified LTI Models represent linear systems with coefficients that are
identified using measured input/output data (requires System Identification
Toolbox software). You can specify initial values and constraints for the
estimation of the coefficients.

The following table summarizes the available types of identified LTI models.

Model Type Description

idtf Transfer function model in polynomial form, with
identifiable parameters

idss State-space model, with identifiable parameters

1-12

Numeric Models

Model Type Description

idpoly Polynomial input-output model, with identifiable
parameters

idproc Continuous-time process model, with identifiable
parameters

idfrd Frequency-response model, with identifiable
parameters

idgrey Linear ODE (grey-box) model, with identifiable
parameters

Identified Nonlinear Models
Identified Nonlinear Models represent nonlinear systems with coefficients
that are identified using measured input/output data (requires System
Identification Toolbox software). You can specify initial values and constraints
for the estimation of the coefficients.

The following table summarizes the available types of identified nonlinear
models.

Model Type Description

idnlarx Nonlinear ARX model, with
identifiable parameters

idnlgrey Nonlinear ODE (grey-box) model,
with identifiable parameters

idnlhw Hammerstein-Wiener model, with
identifiable parameters

Concepts • “Models with Fixed Coefficients” on page 1-18

1-13

1 Linear System Model Objects

Generalized Models

Generalized and Uncertain LTI Models
Generalized LTI Models represent systems having a mixture of fixed
coefficients and tunable or uncertain coefficients. Generalized LTI models
arise from combining numeric LTI models with Control Design Blocks.
For more information about tunable Generalized LTI models and their
applications, see “Models with Tunable Coefficients” on page 1-27.

Uncertain LTI Models are a special type of Generalized LTI model that include
uncertain coefficients but not tunable coefficients. For more information
about using uncertain models, see “Uncertain State-Space Models (uss)” and
“Create Uncertain Frequency Response Data Models” in the Robust Control
Toolbox documentation.

Family Model Type Description

genss Generalized LTI model arising from
combination of Numeric LTI models
(except frd models) with Control
Design Blocks

Generalized
LTI Models

genfrd Generalized LTI model arising
from combination frd models with
Control Design Blocks

uss Generalized LTI model arising from
combination of Numeric LTI models
(except frd models) with uncertain
Control Design Blocks

Uncertain
LTI Models
(requires Robust
Control Toolbox
software) ufrd Generalized LTI model arising

from combination frd models with
uncertain Control Design Blocks

Control Design Blocks
Control Design Blocks are building blocks for constructing tunable or
uncertain models of control systems. Combine tunable Control Design Blocks

1-14

Generalized Models

with numeric arrays or Numeric LTI models to create Generalized Matrices
or Generalized LTI models that include both fixed and tunable components.

Tunable Control Design Blocks include tunable parameter objects as well as
tunable linear models with predefined structure. For more information about
using tunable Control Design Blocks, see “Models with Tunable Coefficients”
on page 1-27.

If you have Robust Control Toolbox software, you can use uncertain Control
Design Blocks to model uncertain parameters or uncertain system dynamics.
For more information about using uncertain blocks, see “Uncertain LTI
Dynamics Elements”, “Uncertain Real Parameters”, and “Uncertain Complex
Parameters and Matrices” in the Robust Control Toolbox documentation.

The following tables summarize the available types of Control Design Blocks.

Dynamic System Model Control Design Blocks

Family Model Type Description

ltiblock.gain Tunable gain block

ltiblock.tf SISO fixed-order
transfer function with
tunable coefficients

ltiblock.ss Fixed-order state-space
model with tunable
coefficients

ltiblock.pid One-degree-of-freedom
PID controller with
tunable coefficients

Tunable Linear
Components

ltiblock.pid2 Two-degree-of-freedom
PID controller with
tunable coefficients

1-15

1 Linear System Model Objects

Dynamic System Model Control Design Blocks (Continued)

Family Model Type Description

ultidyn Uncertain linear
time-invariant
dynamics

Uncertain Dynamics
(requires Robust
Control Toolbox
software) udyn Unstructured uncertain

dynamics

Switch Block loopswitch Switch for marking
potential loop-opening
location in model

Static Model Control Design Blocks

Family Model Type Description

Tunable Parameter realp Tunable scalar
parameter or matrix

ureal Uncertain real scalar

ucomplex Uncertain complex
scalar

Uncertain
Parameters (requires
Robust Control Toolbox
software)

ucomplexm Uncertain complex
matrix

Generalized Matrices
Generalized Matrices extend the notion of numeric matrices to matrices that
include tunable or uncertain values.

Create tunable generalized matrices by building rational expressions
involving realp parameters. You can use generalized matrices as inputs
to tf or ss to create tunable linear models with structures other than the
predefined structures of the Control Design Blocks. Use such models for
parameter studies or some compensator tuning tasks.

1-16

Generalized Models

If you have Robust Control Toolbox software, you can create uncertain
matrices by building rational expressions involving uncertain parameters
such as ureal or ucomplex.

Model Type Description

genmat Generalized matrix that includes parametric or
tunable entries

umat (requires Robust
Control Toolbox
software)

Generalized matrix that includes uncertain
entries

For more information about generalized matrices and their applications, see
“Models with Tunable Coefficients” on page 1-27.

1-17

1 Linear System Model Objects

Models with Fixed Coefficients

In this section...

“Numeric LTI Models” on page 1-18

“Transfer Functions” on page 1-19

“State-Space Models” on page 1-20

“Frequency Response Data (FRD) Models” on page 1-22

“PID Controllers” on page 1-23

Numeric LTI Models
Numeric LTI models are the basic representation of linear systems or
components of linear systems whose coefficients are fixed numeric values.

Applications of Numeric LTI Models
You can use Numeric LTI models to represent block diagram components such
as plant or sensor dynamics. By connecting Numeric LTI models together, you
can derive Numeric LTI models of block diagrams. Use Numeric LTI models
for most modeling, analysis, and control design tasks, including:

• Analyzing linear system dynamics using analysis commands such as bode,
step, or impulse.

• Designing controllers for linear systems using “SISO Design Tool” or the
PID Tuner GUI.

• Designing controllers using control design commands such as pidtune,
rlocus, or lqr/lqg.

Types of Numeric LTI Models
Control System Toolbox includes the following types of numeric LTI models:

• “Transfer Functions” on page 1-19

• “State-Space Models” on page 1-20

• “Frequency Response Data (FRD) Models” on page 1-22

1-18

Models with Fixed Coefficients

• “PID Controllers” on page 1-23

Transfer Functions

• “Transfer Function Representations” on page 1-19

• “Commands for Creating Transfer Functions” on page 1-20

Transfer Function Representations
Control System Toolbox software supports transfer functions that are
continuous-time or discrete-time, and SISO or MIMO. You can also have time
delays in your transfer function representation.

A SISO transfer function is expressed as the ratio:

G s
N s

D s
() =

()
()

,

of polynomials N(s) and D(s), called the numerator and denominator
polynomials, respectively.

You can represent linear systems as transfer functions in polynomial or
factorized (zero-pole-gain) form. For example, the polynomial-form transfer
function:

G s
s s

s s

2

2
3 4

5 6

can be rewritten in factorized form as:

G s
s s

s s

1 4

2 3
.

The tf model object represents transfer functions in polynomial form. The
zpk model object represents transfer functions in factorized form.

MIMO transfer functions are arrays of SISO transfer functions. For example:

1-19

1 Linear System Model Objects

G s

s
s
s
s

3
4
1
2

is a one-input, two output transfer function.

Commands for Creating Transfer Functions
Use the commands described in the following table to create transfer
functions.

Command Description

tf Create tf objects representing continuous-time or
discrete-time transfer functions in polynomial form.

zpk Create zpk objects representing continuous-time or
discrete-time transfer functions in zero-pole-gain
(factorized) form.

filt Create tf objects representing discrete-time
transfer functions using digital signal processing
(DSP) convention.

State-Space Models

• “State-Space Model Representations” on page 1-20

• “Explicit State-Space Models” on page 1-21

• “Descriptor (Implicit) State-Space Models” on page 1-21

• “Commands for Creating State-Space Models” on page 1-22

State-Space Model Representations
State-space models rely on linear differential equations or difference
equations to describe system dynamics. Control System Toolbox software
supports SISO or MIMO state-space models in continuous or discrete time.

1-20

Models with Fixed Coefficients

State-space models can include time delays. You can represent state-space
models in either explicit or descriptor (implicit) form.

State-space models can result from:

• Linearizing a set of ordinary differential equations that represent a
physical model of the system.

• State-space model identification using System Identification Toolbox
software.

• State-space realization of transfer functions. (See “Conversion Between
Model Types” on page 5-2 for more information.)

Use ss model objects to represent state-space models.

Explicit State-Space Models
Explicit continuous-time state-space models have the following form:

dx
dt

Ax Bu

y Cx Du

= +

= +

where x is the state vector. u is the input vector, and y is the output vector. A,
B, C, and D are the state-space matrices that express the system dynamics.

A discrete-time explicit state-space model takes the following form:

x n Ax n Bu n

y n Cx n Du n

+[] = [] + []
[] = [] + []
1

where the vectors x[n], u[n], and y[n] are the state, input, and output vectors
for the nth sample.

Descriptor (Implicit) State-Space Models
A descriptor state-space model is a generalized form of state-space model. In
continuous time, a descriptor state-space model takes the following form:

1-21

1 Linear System Model Objects

E
dx
dt

Ax Bu

y Cx Du

where x is the state vector. u is the input vector, and y is the output vector. A,
B, C, D, and E are the state-space matrices.

Commands for Creating State-Space Models
Use the commands described in the following table to create state-space
models.

Command Description

ss Create explicit state-space model.

dss Create descriptor (implicit) state-space model.

delayss Create state-space models with specified time
delays.

Frequency Response Data (FRD) Models

• “Frequency Response Data” on page 1-22

• “Commands for Creating FRD Models” on page 1-23

Frequency Response Data
In the Control System Toolbox software, you can use frd models to store,
manipulate, and analyze frequency response data. An frd model stores a
vector of frequency points with the corresponding complex frequency response
data you obtain either through simulations or experimentally.

For example, suppose you measure frequency response data for the SISO
system you want to model. You can measure such data by driving the system
with a sine wave at a set of frequencies ω1, ω2, ,...,ωn, as shown:

1-22

Models with Fixed Coefficients

��������� ����� �����

At steady state, the measured response yi(t) to the driving signal at each
frequency ωi takes the following form:

y t a t b i ni i() = +() =sin , , , . 1

The measurement yields the complex frequency response G at each input
frequency:

G j ae i ni
jb , , , .1

You can do most frequency-domain analysis tasks on frd models, but you
cannot perform time-domain simulations with them. For information on
frequency response analysis of linear systems, see Chapter 8 of [1].

Commands for Creating FRD Models
Use the following commands to create FRD models.

Command Description

frd Create frd objects from frequency response data.

frestimate Create frd objects by estimating the frequency
response of a Simulink® model. This approach
requires Simulink Control Design™ software.
See “Frequency Response Estimation” in the
Simulink Control Design documentation for more
information.

PID Controllers

• “Continuous-Time PID Controller Representations” on page 1-24

• “Discrete-Time PID Controllers” on page 1-25

1-23

1 Linear System Model Objects

Continuous-Time PID Controller Representations
You can represent continuous-time Proportional-Integral-Derivative (PID)
controllers in either parallel or standard form. The two forms differ in the
parameters used to express the proportional, integral, and derivative actions
and the filter on the derivative term, as shown in the following table.

Form Formula

Parallel

C K
K
s

K s
T sp

i d

f

1
,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T s

T s
T
N

s
p

i

d

d

1
1

1
,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant

Use a controller form that is convenient for your application. For example,
if you want to express the integrator and derivative actions in terms of time
constants, use Standard form.

1-24

Models with Fixed Coefficients

Discrete-Time PID Controllers
Discrete-time PID controllers are expressed by the following formulas.

Form Formula

Parallel

C K K IF z
K

T DF zp i
d

f

,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T

IF z
T

T
N

DF z
p

i

d

d

1
1

,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant

IF(z) and DF(z) are the discrete integrator formulas for the integrator and
derivative filter, respectively. Use the IFormula and DFormula properties of
the pid or pidstd model objects to set the IF(z) and DF(z) formulas. The next
table shows available formulas for IF(z) and DF(z). Ts is the sample time.

1-25

1 Linear System Model Objects

IFormula or DFormula IF(z) or DF(z)

ForwardEuler (default)
T

z
s
1

BackwardEuler

T z
z

s
1

Trapezoidal

T z
z

s
2

1
1

If you do not specify a value for IFormula, DFormula, or both, ForwardEuler
is used by default.

1-26

Models with Tunable Coefficients

Models with Tunable Coefficients

In this section...

“Tunable Generalized LTI Models” on page 1-27

“Modeling Tunable Components” on page 1-28

“Modeling Control Systems with Tunable Components” on page 1-28

“Internal Structure of Generalized Models” on page 1-29

Tunable Generalized LTI Models
Tunable Generalized LTI models represent systems having both fixed and
tunable (or parametric) coefficients.

You can use tunable Generalized LTI models to:

• Model a tunable (or parametric) component of a control system, such as a
tunable low-pass filter.

• Model a control system that contains both:

- Fixed components, such as plant dynamics and sensor dynamics

- Tunable components, such as filters and compensators

You can use tunable Generalized LTI models for parameter studies. For an
example, see “Sample a Tunable (Parametric) Model for Parameter Studies”
on page 2-68.

If you have Robust Control Toolbox software, you can use tunable Generalized
LTI models for tuning fixed control structures using tuning commands such
as systune and looptune. See Robust Control Toolbox documentation:

• “Automated Tuning”

• “Automated Loop-Shaping Design”

• “H-Infinity Synthesis”

1-27

1 Linear System Model Objects

Modeling Tunable Components
Control System Toolbox includes tunable components with predefined
structure called “Control Design Blocks” on page 1-14. You can use tunable
Control Design Blocks to model any tunable component that fits one of the
predefined structures.

To create tunable components with a specific custom structure that is not
covered by the Control Design Blocks:

1 Use the tunable real parameter realp or the generalized matrix genmat to
represent the tunable coefficients of your component.

2 Use the resulting realp or genmat objects as inputs to tf or ss to model
the component. The result is a generalized state-space (genss) model of
the component.

For examples of creating such custom tunable components, see:

• “Tunable Low-Pass Filter” on page 2-53

• “Tunable Second-Order Filter” on page 2-54

• “State-Space Model with Both Fixed and Tunable Parameters” on page 2-55

Modeling Control Systems with Tunable Components
To construct a tunable Generalized LTI model representing a control system
with both fixed and tunable components:

1 Model the nontunable components of your system using Numeric LTI
models.

2 Model each tunable component using Control Design Blocks or expressions
involving such blocks. See “Modeling Tunable Components” on page 1-28.

3 Use model interconnection commands such as series, parallel or
connect, or the arithmetic operators +, -, *, /, \, and ^, to combine all the
components of your system.

The resulting model is:

1-28

Models with Tunable Coefficients

• A genss model, if none of the nontunable components is a frequency
response data model (for example, frd)

• A genfrd model, if the nontunable component is a frd model

For an example of constructing a genss model of a control system with
both fixed and tunable components, see “Control System with Tunable
Components” on page 2-56.

Internal Structure of Generalized Models
A Generalized model separately stores the numeric and parametric portions
of the model by structuring the model in Standard Form, as shown in the
following illustration.

�

� �

�

	

�

�

������

�

�

 �

w and z represent the inputs and outputs of the Generalized model.

1-29

1 Linear System Model Objects

H represents all portions of the Generalized model that have fixed
(non-parametric) coefficients. H is:

• A state-space (ss) model, for genss models

• A frequency response data (frd) model, for genfrd models

• A matrix, for genmat models

B represents the parametric components of the Generalized model, which are
the Control Design Blocks B1, . . . , BN. The Blocks property of the Generalized
model stores a list of the names of these blocks. If the Generalized model has
blocks that occur multiple times in B1, . . . , BN, these are only listed once in
the Blocks property.

To access the internal representation of a Generalized model, including H and
B, use the getLFTModel command.

This Standard Form can represent any control structure. To understand why,
consider the control structure as an aggregation of fixed-coefficient elements
interacting with the parametric elements:

�������	�
��
������
�
���
��
���

���������
���

��

��

��

�����

��
�����
����
�

�

��
�����
�
��
�

�
	�

��

	� ��

��

	�

�

To rewrite this in Standard Form, define

1-30

Models with Tunable Coefficients

u u u

y y y
N

N

: , ,

: , , ,

= []
= []

1

1

and group the tunable control elements B1, . . . , BN into the block-diagonal
configuration C. P includes all the fixed components of the control
architecture—actuators, sensors, and other nontunable elements—and their
interconnections.

1-31

1 Linear System Model Objects

Using Model Objects
After you represent your dynamic system as a model object, you can:

• Attach additional information to the model using model attributes
(properties). See “Model Attributes”.

• Manipulate the model using arithmetic and model interconnection
operations. See “Model Interconnection”.

• Analyze the model response using commands such as bode and step. See
“Linear Analysis”.

• Perform parameter studies using model arrays. See “Model Arrays”.

• Design compensators. You can:

- Design compensators for systems specified as numeric LTI models.
Available compensator design techniques include PID tuning, root locus
analysis, pole placement, LQG optimal control, and frequency domain
loop-shaping. See “PID Controller Tuning”, “SISO Feedback Loops”, or
“Linear-Quadratic-Gaussian Control”.

- Manually tune many control architectures using the SISO Design Tool.
See “SISO Feedback Loops”.

- Use tuning commands such as systune, looptune, or hinfstruct to
automatically tune a control system that you represent as a genss model
with tunable blocks (requires Robust Control Toolbox software). See
Robust Control Toolbox documentation:

• “Automated Tuning”

• “Automated Loop-Shaping Design”

• “H-Infinity Synthesis”

1-32

Simulink® Block for LTI Systems

Simulink Block for LTI Systems
You can incorporate model objects into Simulink diagrams using the LTI
System block shown below.

The LTI System block can be accessed either by typing

ltiblock

1-33

1 Linear System Model Objects

at the MATLAB prompt or from the Control System Toolbox section of
the main Simulink library.

The LTI System block consists of the dialog box shown on the right in the
figure above. In the editable text box labeled LTI system variable, enter
either the variable name of an LTI object located in the MATLAB workspace
(for example, sys) or a MATLAB expression that evaluates to an LTI object
(for example, tf(1,[1 1])). The LTI System block accepts both continuous
and discrete LTI objects in either transfer function, zero-pole-gain, or
state-space form. All types of delays are supported in the LTI block. Simulink
converts the model to its state-space equivalent prior to initializing the
simulation.

Use the editable text box labeled Initial states to enter an initial state vector
for state-space models. The concept of "initial state" is not well-defined for
transfer functions or zero-pole-gain models, as it depends on the choice of
state coordinates used by the realization algorithm. As a result, you cannot
enter nonzero initial states when you supply TF or ZPK models to LTI blocks
in a Simulink diagram.

1-34

References

References
[1] Dorf, R.C. and R.H. Bishop, Modern Control Systems, Addison-Wesley,
Menlo Park, CA, 1998.

1-35

1 Linear System Model Objects

1-36

2

Model Creation

• “SISO Model Creation” on page 2-2

• “Discrete-Time Model Creation” on page 2-10

• “MIMO Model Creation” on page 2-14

• “Models with Time Delays” on page 2-21

• “Models with Parametric or Tunable Coefficients” on page 2-53

• “Model Arrays” on page 2-59

2 Model Creation

SISO Model Creation
How to create continuous-time single-input, single-output (SISO) models.

In this section...

“Transfer Function Model Using Numerator and Denominator Coefficients”
on page 2-2

“Transfer Function Model Using Zeros, Poles, and Gain” on page 2-3

“State-Space Model” on page 2-4

“Frequency-Response Model” on page 2-5

“Proportional-Integral-Derivative (PID) Controller” on page 2-6

Transfer Function Model Using Numerator and
Denominator Coefficients
This example shows how to create continuous-time single-input, single-output
(SISO) transfer functions from their numerator and denominator coefficients
using tf.

Create the transfer function G s
s

s s
() =

+ +2 3 2
:

num = [1 0];
den = [1 3 2];
G = tf(num,den);

num and den are the numerator and denominator polynomial coefficients
in descending powers of s. For example, den = [1 3 2] represents the
denominator polynomial s2 + 3s + 2.

G is a tf model object, which is a data container for representing transfer
functions in polynomial form.

2-2

SISO Model Creation

Tip Alternatively, you can specify the transfer function G(s) as an expression
in s:

1 Create a transfer function model for the variable s.

s = tf('s');

2 Specify G(s) as a ratio of polynomials in s.

G = s/(s^2 + 3*s + 2);

More About

• “What Are Model Objects?” on page 1-2

• “Transfer Functions” on page 1-19

Transfer Function Model Using Zeros, Poles, and Gain
This example shows how to create single-input, single-output (SISO) transfer
functions in factored form using zpk.

Create the factored transfer function G s
s

s i s i s

5

1 1 2
:

Z = [0];
P = [-1-1i -1+1i -2];
K = 5;
G = zpk(Z,P,K);

Z and P are the zeros and poles (the roots of the numerator and denominator,
respectively). K is the gain of the factored form. For example, G(s) has a real
pole at s = –2 and a pair of complex poles at s = –1 ± i. The vector P = [-1-1i
-1+1i -2] specifies these pole locations.

G is a zpk model object, which is a data container for representing transfer
functions in zero-pole-gain (factorized) form.

2-3

2 Model Creation

More About

• “What Are Model Objects?” on page 1-2

• “Transfer Functions” on page 1-19

State-Space Model
This example shows how to create a continuous-time single-input,
single-output (SISO) state-space model from state-space matrices using ss.

Create a model of an electric motor where the state-space equations are:

dx
dt

Ax Bu

y Cx Du

= +

= +

where the state variables are the angular position θ and angular velocity
dθ/dt:

x d
dt

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 ,

u is the electric current, the output y is the angular velocity, and the
state-space matrices are:

A B C D

 0 1

5 2
0
3

0 1 0, , , .

To create this model, enter:

A = [0 1;-5 -2];
B = [0;3];
C = [0 1];
D = 0;
sys = ss(A,B,C,D);

2-4

SISO Model Creation

sys is an ss model object, which is a data container for representing
state-space models.

Tip To represent a system of the form:

E
dx
dt

Ax Bu

y Cx Du

use dss. This command creates a ss model with a nonempty E matrix, also
called a descriptor state-space model. See “MIMO Descriptor State-Space
Model” on page 2-17 for an example.

More About

• “What Are Model Objects?” on page 1-2

• “State-Space Models” on page 1-20

Frequency-Response Model
This example shows how to create a single-input, single-output (SISO)
frequency-response model using frd.

A frequency-response model stores a vector of frequency points with
corresponding complex frequency response data you obtain either through
simulations or experimentally. Thus, if you measure the frequency response
of your system at a set of test frequencies, you can use the data to create a
frequency response model:

1 Load the frequency response data in AnalyzerData.mat.

load AnalyzerData

This command loads the data into the MATLAB workspace as the column
vectors freq and resp. The variables freq and resp contain 256 test
frequencies and the corresponding complex-valued frequency response
points, respectively.

2-5

2 Model Creation

Tip To inspect these variables, enter:

whos freq resp

2 Create a frequency response model.

sys = frd(resp,freq);

sys is an frd model object, which is a data container for representing
frequency response data.

You can use frd models with many frequency-domain analysis commands.
For example, visualize the frequency response data using bode.

Tip By default, the frd command assumes that the frequencies are in
radians/second. To specify different frequency units, use the TimeUnit and
FrequencyUnit properties of the frd model object. For example:

sys = frd(resp,freq,'TimeUnit','min','FrequencyUnit','rad/TimeUnit')

sets the frequency units to radians/minute.

More About

• “What Are Model Objects?” on page 1-2

• “Frequency Response Data (FRD) Models” on page 1-22

Proportional-Integral-Derivative (PID) Controller
How to create models representing PID controllers.

• “Continuous-Time PID Controller Representations” on page 2-7

• “Create Continuous-Time Parallel-Form PID Controller” on page 2-8

• “Create Continuous-Time Standard-Form PID Controller” on page 2-8

2-6

SISO Model Creation

Continuous-Time PID Controller Representations
You can represent continuous-time Proportional-Integral-Derivative (PID)
controllers in either parallel or standard form. The two forms differ in the
parameters used to express the proportional, integral, and derivative actions
and the filter on the derivative term, as shown in the following table.

Form Formula

Parallel

C K
K
s

K s
T sp

i d

f

1
,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T s

T s
T
N

s
p

i

d

d

1
1

1
,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant

Use a controller form that is convenient for your application. For example,
if you want to express the integrator and derivative actions in terms of time
constants, use Standard form.

2-7

2 Model Creation

See “Discrete-Time Proportional-Integral-Derivative (PID) Controller” on
page 2-11 for information on creating PID Controllers in discrete time.

Create Continuous-Time Parallel-Form PID Controller
This example shows how to create a continuous-time
Proportional-Integral-Derivative (PID) controller in parallel form using pid.

Create the following parallel-form PID controller: C
s

s
s

29 5
26 2 4 3

0 06 1
.

. .
.

.

Kp = 29.5;
Ki = 26.2;
Kd = 4.3;
Tf = 0.06;
C = pid(Kp,Ki,Kd,Tf)

C is a pid model object, which is a data container for representing
parallel-form PID controllers.

Create Continuous-Time Standard-Form PID Controller
This example shows how to create a continuous-time
Proportional-Integral-Derivative (PID) controller in standard form using
pidstd.

Create the following standard-form PID controller:

C
s

s

s

29 5 1
1

1 13
0 15

0 15
2 3

1
.

.
.

.
.

.

Kp = 29.5;
Ti = 1.13;
Td = 0.15;
N = 2.3;
C = pid(Kp,Ki,Kd,Tf)

C is a pidstd model object, which is a data container for representing
standard-form PID controllers.

2-8

SISO Model Creation

More About

• “What Are Model Objects?” on page 1-2

• “PID Controllers” on page 1-23

2-9

2 Model Creation

Discrete-Time Model Creation
How to create discrete-time models.

• “Discrete-Time Transfer Function Model” on page 2-10

• “Discrete-Time Proportional-Integral-Derivative (PID) Controller” on page
2-11

Discrete-Time Transfer Function Model
This example shows how to create a discrete-time transfer function model
using tf.

Create the transfer function G z
z

z z
() =

− −2 2 6
with a sampling time of 0.1 s.

num = [1 0];
den = [1 -2 -6];
Ts = 0.1;
G = tf(num,den,Ts)

num and den are the numerator and denominator polynomial coefficients in
descending powers of z. G is a tf model object.

Tip Create a discrete-time zpk, ss, and frd models in a similar way by
appending a sampling period to the input arguments. For examples, see the
reference pages for those commands.

The sampling time is stored in the Ts property of G. Access Ts, using dot
notation:

G.Ts

More About

• “What Are Model Objects?” on page 1-2

• “Models with Fixed Coefficients” on page 1-18

2-10

Discrete-Time Model Creation

Discrete-Time Proportional-Integral-Derivative (PID)
Controller

Discrete-Time PID Controller Representations
Discrete-time PID controllers are expressed by the following formulas.

Form Formula

Parallel

C K K IF z
K

T DF zp i
d

f

,

where:

• Kp = proportional gain

• Ki = integrator gain

• Kd = derivative gain

• Tf = derivative filter time

Standard

C K
T

IF z
T

T
N

DF z
p

i

d

d

1
1

,

where:

• Kp = proportional gain

• Ti = integrator time

• Td = derivative time

• N = derivative filter constant

IF(z) and DF(z) are the discrete integrator formulas for the integrator and
derivative filter, respectively. Use the IFormula and DFormula properties of

2-11

2 Model Creation

the pid or pidstd model objects to set the IF(z) and DF(z) formulas. The next
table shows available formulas for IF(z) and DF(z). Ts is the sample time.

IFormula or DFormula IF(z) or DF(z)

ForwardEuler (default)
T

z
s
1

BackwardEuler

T z
z

s
1

Trapezoidal

T z
z

s
2

1
1

If you do not specify a value for IFormula, DFormula, or both, ForwardEuler
is used by default.

Create Discrete-Time Standard-Form PID Controller
This example shows how to create a standard-form discrete-time
Proportional-Integral-Derivative (PID) controller that has Kp = 29.5, Ti = 1.13,
Td = 0.15 N = 2.3, and sample time Ts 0.1 :

C = pidstd(29.5,1.13,0.15,2.3,0.1,...
'IFormula','Trapezoidal','DFormula','BackwardEuler')

This command creates a pidstd model with IF z
T z

z
s

2
1
1
and

DF z
T z
z

s
1
.

You can set the discrete integrator formulas for a parallel-form controller
in the same way, using pid.

2-12

Discrete-Time Model Creation

More About

• “What Are Model Objects?” on page 1-2

• “PID Controllers” on page 1-23

2-13

2 Model Creation

MIMO Model Creation
How to create multi-input, multi-output (MIMO) models.

In this section...

“MIMO Transfer Function Model” on page 2-14

“MIMO State-Space Model” on page 2-15

“MIMO Descriptor State-Space Model” on page 2-17

“MIMO Frequency Response Data Model” on page 2-18

“Select Input/Output Pairs in MIMO Models” on page 2-20

MIMO Transfer Function Model
This example shows how to create a multi-input, multi-output (MIMO)
transfer function model by concatenating single-input, single-output (SISO)
transfer function models.

To create the one-input, two-output MIMO transfer function:

G s

s
s
s

s s

1
1
2

4 52

,

perform the following steps:

1 Create SISO transfer functions for each channel.

g11 = tf([1 -1],[1 1]);
g21 = tf([1 2],[1 4 5]);

Tip Use zpk instead of tf to create MIMO transfer functions in factorized
form.

2-14

MIMO Model Creation

2 Concatenate the transfer functions.

G = [g11; g21];

More About

• “What Are Model Objects?” on page 1-2

• “Transfer Functions” on page 1-19

MIMO State-Space Model
This example shows how to create a MIMO state-space model using ss.

You create a MIMO state-space model in the same way as you create a SISO
state-space model. The only difference between the SISO and MIMO cases
is the dimensions of the state-space matrices. The dimensions of the B, C,
and D matrices increase with the numbers of inputs and outputs as shown
in the following illustration.

�

� �

��������������
�����������

�����������
������������

In this example, you create a state-space model for a rotating body with
inertia tensor J, damping force F, and three axes of rotation, related as:

2-15

2 Model Creation

J
d
dt

F T

y

 .

The system input T is the driving torque. The output y is the vector of angular
velocities of the rotating body.

To express this system in state-space form:

dx
dt

Ax Bu

y Cx Du

= +

= +

rewrite it as:

d
dt

J F J T

y

= − +

=

− −1 1

.

Then the state-space matrices are:

A J F B J C I D 1 1 0, , , .

To create this model, enter the following commands:

J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0:
sys_mimo = ss(A,B,C,D);

These commands assume that J is the inertia tensor of a cube rotating about
its corner, and the damping force has magnitude 0.2.

sys_mimo is an ss model.

2-16

MIMO Model Creation

More About

• “What Are Model Objects?” on page 1-2

• “State-Space Models” on page 1-20

MIMO Descriptor State-Space Model
This example shows how to create a continuous-time descriptor (implicit)
state-space model using dss.

Note This example uses the same rotating-body system shown in “MIMO
State-Space Model” on page 2-15, where you inverted the inertia matrix J to
obtain the value of the B matrix. If J is poorly-conditioned for inversion, you
can instead use a descriptor (implicit) state-space model.

A descriptor (implicit) state-space model is of the form:

E
dx
dt

Ax Bu

y Cx Du

Create a state-space model for a rotating body with inertia tensor J, damping
force F, and three axes of rotation, related as:

J
d
dt

F T

y

 .

The system input T is the driving torque. The output y is the vector of angular
velocities of the rotating body. You can write this system as a descriptor
state-space model having the following state-space matrices:

A F B I C I D E J , , , , .0

To create this system, enter:

J = [8 -3 -3; -3 8 -3; -3 -3 8];

2-17

2 Model Creation

F = 0.2*eye(3);
A = -F;
B = eye(3);
C = eye(3);
D = 0;
E = J;
sys_mimo = dss(A,B,C,D,E)

These commands assume that J is the inertia tensor of a cube rotating about
its corner, and the damping force has magnitude 0.2.

sys is an ss model with a nonempty E matrix.

More About

• “What Are Model Objects?” on page 1-2

• “State-Space Models” on page 1-20

MIMO Frequency Response Data Model
This example shows how to create a MIMO frequency-response model using
frd.

Frequency response data for a MIMO system includes a vector of complex
response data for each of the input/output (I/O) pair of the system. Thus, if
you measure the frequency response of each I/O pair your system at a set of
test frequencies, you can use the data to create a frequency response model:

1 Load frequency response data in AnalyzerDataMIMO.mat.

load AnalyzerDataMIMO H11 H12 H21 H22 freq

This command loads the data into the MATLAB workspace as five
column vectors H11, H12, H21, H22, and freq. The vector freq contains
100 test frequencies. The other four vectors contain the corresponding
complex-valued frequency response of each I/O pair of a two-input,
two-output system.

2-18

MIMO Model Creation

Tip To inspect these variables, enter:

whos H11 H12 H21 H22 freq

2 Organize the data into a three-dimensional array.

Hresp = zeros(2,2,length(freq));
Hresp(1,1,:) = H11;
Hresp(1,2,:) = H12;
Hresp(2,1,:) = H21;
Hresp(2,2,:) = H22;

The dimensions of Hresp are the number of outputs, number of inputs, and
the number of frequencies for which there is response data. Hresp(i,j,:)
contains the frequency response from input j to output i.

3 Create a frequency-response model.

H = frd(Hresp,freq);

sys is an frd model object, which is a data container for representing
frequency response data.

You can use frd models with many frequency-domain analysis commands.
For example, visualize the response of this two-input, two-output system
using bode.

Tip By default, the frd command assumes that the frequencies are in
radians/second. To specify different frequency units, use the TimeUnit and
FrequencyUnit properties of the frd model object. For example:

sys = frd(Hresp,freq,'TimeUnit','min','FrequencyUnit','rad/TimeUnit')

sets the frequency units to in radians/minute.

2-19

2 Model Creation

More About

• “What Are Model Objects?” on page 1-2

• “Frequency Response Data (FRD) Models” on page 1-22

Select Input/Output Pairs in MIMO Models
This example shows how to select the response from the first input to the
second output of a MIMO model.

1 Create a two-input, one-output transfer function.

N = {[1 -1],[1];[1 2],[3 1 4]};
D = [1 1 10];
H = tf(N,D)

Note For more information about using cell arrays to create MIMO
transfer functions, see the tf reference page.

2 Select the response from the second input to the output of H.

To do this, use MATLAB array indexing.

H12 = H(1,2)

For any MIMO system H, the index notation H(i,j) selects the response
from the jth input to the ith output.

2-20

Models with Time Delays

Models with Time Delays
How to create models that include time delays.

In this section...

“Modeling Time Delays” on page 2-21

“First Order Plus Dead Time Model” on page 2-22

“Input and Output Delay in State-Space Model” on page 2-23

“Transport Delay in MIMO Transfer Function” on page 2-25

“Closing Feedback Loops with Time Delays” on page 2-26

“Discrete-Time Transfer Function with Time Delay” on page 2-29

“Time-Delay Approximation” on page 2-29

“Time-Delay Approximation in Continuous-Time Open-Loop Model” on
page 2-30

“Time-Delay Approximation in Continuous-Time Closed-Loop Model” on
page 2-34

“Approximate Different Delays with Different Approximation Orders” on
page 2-39

“Convert Time Delay to Factors of 1/z in Discrete-Time Model” on page 2-41

“Fractional Time-Delay Approximation in Discrete-Time Model” on page
2-43

“Frequency Response Data (FRD) Model with Time Delay” on page 2-45

“Internal Delays” on page 2-47

Modeling Time Delays
Use the following model properties to represent time delays in linear systems.

• InputDelay, OutputDelay— Time delays at system inputs or outputs

• ioDelay, InternalDelay— Time delays that are internal to the system

2-21

2 Model Creation

In discrete-time models, these properties are constrained to integer values
that represent delays expressed as integer multiples of the sampling time. To
approximate discrete-time models with delays that are a fractional multiple of
the sampling time, use thiran.

First Order Plus Dead Time Model
This example shows how to create a first order plus dead time model using
the InputDelay or OutputDelay properties of tf.

To create the following first-order transfer function with a 2.1 s time delay:

G s e
s

s

2 1 1
10

. ,

enter:

G = tf(1,[1 10],'InputDelay',2.1)

where InputDelay specifies the delay at the input of the transfer function.

Tip You can use InputDelay with zpk the same way as with tf:

G = zpk([],-10,1,'InputDelay',2.1)

For SISO transfer functions, a delay at the input is equivalent to a delay at the
output. Therefore, the following command creates the same transfer function:

G = tf(1,[1 10],'OutputDelay',2.1)

Use dot notation to examine or change the value of a time delay. For example,
change the time delay to 3.2 as follows:

G.OutputDelay = 3.2;

To see the current value, enter:

G.OutputDelay

2-22

Models with Time Delays

ans =

3.2000

Tip An alternative way to create a model with a time delay is to specify the
transfer function with the delay as an expression in s:

1 Create a transfer function model for the variable s.

s = tf('s');

2 Specify G(s) as an expression in s.

G = exp(-2.1*s)/(s+10);

More About

• “What Are Model Objects?” on page 1-2

• “Transfer Functions” on page 1-19

Input and Output Delay in State-Space Model
This example shows how to create state-space models with delays at the
inputs and outputs, using the InputDelay or OutputDelay properties of ss.

Create a state-space model describing the following one-input, two-output
system:

dx t

dt
x t u t

y t
x t

x t

2 3 1 5

0 7

.

.
.

This system has an input delay of 1.5. The first output has an output delay of
0.7, and the second output is not delayed.

2-23

2 Model Creation

Note In contrast to SISO transfer functions, input delays are not equivalent
to output delays for state-space models. Shifting a delay from input to
output in a state-space model requires introducing a time shift in the model
states. For example, in the model of this example, defining T = t – 1.5 and
X(T) = x(T + 1.5) results in the following equivalent system:

dX T

dT
X T u T

y T
X T
X T

2 3

2 2
1 5
.
.

.

All of the time delays are on the outputs, but the new state variable X is
time-shifted relative to the original state variable x. Therefore, if your states
have physical meaning, or if you have known state initial conditions, consider
carefully before shifting time delays between inputs and outputs.

To create this system:

1 Define the state-space matrices.

A = -2;
B = 3;
C = [1;-1];
D = 0;

2 Create the model.

G = ss(A,B,C,D,'InputDelay',1.5,'OutputDelay',[0.7;0])

G is a ss model.

2-24

Models with Time Delays

Tip Use delayss to create state-space models with more general combinations
of input, output, and state delays, of the form:

dx

dt
Ax t Bu t A x t t B u t t

y t Cx t Du t

j j j j

j

N

= + + − + −

= +

=
∑() () (() ())

() () (

1

)) (() ())+ − + −
=

∑ C x t t D u t tj j j j

j

N

1

More About

• “What Are Model Objects?” on page 1-2

• “State-Space Models” on page 1-20

Transport Delay in MIMO Transfer Function
This example shows how to create a MIMO transfer function with different
transport delays for each input-output (I/O) pair.

Create the MIMO transfer function:

H s
e

s
e

s
s

e
s
s

0 1 0 3

0 2

2 1
10

10
1
5

. .

.
.

Time delays in MIMO systems can be specific to each I/O pair, as in this
example. You cannot use InputDelay and OutputDelay to model I/O-specific
transport delays. Instead, use ioDelay to specify the transport delay across
each I/O pair.

To create this MIMO transfer function:

1 Create a transfer function model for the variable s.

s = tf('s');

2-25

2 Model Creation

2 Use the variable s to specify the transfer functions of H without the time
delays.

H = [2/s (s+1)/(s+10); 10 (s-1)/(s+5)];

3 Specify the ioDelay property of H as an array of values corresponding to
the transport delay for each I/O pair.

H.ioDelay = [0.1 0.3; 0 0.2];

H is a two-input, two-output tf model. Each I/O pair in H has the time delay
specified by the corresponding entry in tau.

Closing Feedback Loops with Time Delays
This example shows how internal delays arise when you interconnect models
that have input, output, or transport time delays.

Create a model of the following control architecture:

�

� �

�� ������

����
���
�� ��

G is the plant model, which has an input delay. C is a proportional-integral
(PI) controller.

To create a model representing the closed-loop response of this system:

1 Create the plant G and the controller C.

G = tf(1,[1 10],'InputDelay',2.1);
C = pid(0.5,2.3);

C has a proportional gain of 0.5 and an integral gain of 2.3.

2 Use feedback to compute the closed-loop response from r to y.

T = feedback(C*G,1);

2-26

Models with Time Delays

The time delay in T is not an input delay as it is in G. Because the time delay
is internal to the closed-loop system, the software returns T as an ss model
with an internal time delay of 2.1 seconds.

Note In addition to feedback, any system interconnection function
(including parallel and series) can give rise to internal delays.

T is an exact representation of the closed-loop response, not an approximation.
To access the internal delay value, enter:

T.InternalDelay

A step plot of T confirms the presence of the time delay:

step(T)

2-27

2 Model Creation

Note Most analysis commands, such as step, bode and margin, support
models with internal delays.

The internal time delay is stored in the InternalDelay property of T. Use
dot notation to access InternalDelay. For example, to change the internal
delay to 3.5 seconds, enter:

T.InternalDelay = 3.5

2-28

Models with Time Delays

You cannot modify the number of internal delays because they are structural
properties of the model.

More About

• “Internal Delays” on page 2-47

Discrete-Time Transfer Function with Time Delay
This example shows how to create a discrete-time transfer function with a
time delay.

Specify time delays for discrete-time models in the same way as for
continuous-time models, except for discrete-time models, delay values must
be integer multiples of the sampling time. For example, create the following
first-order transfer function, with a sampling time of Ts = 0.1 s:

H z z
z

25 2
0 95.

.

H = tf(2,[1 -0.95],0.1,'InputDelay',25)

Setting InputDelay to 25 results in a delay of 25 sampling periods.

Tip Use thiran to approximate discrete-time models with delays that are a
fractional multiple of the sampling time.

Time-Delay Approximation
Many control design algorithms cannot handle time delays directly. For
example, techniques such as root locus, LQG, and pole placement do not work
properly if time delays are present. A common technique is to replace delays
with all-pass filters that approximate the delays.

To approximate time delays in continuous-time models, use the pade
command to compute a Padé approximation. The Padé approximation is valid
only at low frequencies, and provides better frequency-domain approximation
than time-domain approximation. It is therefore important to compare the

2-29

2 Model Creation

true and approximate responses to choose the right approximation order
and check the approximation validity.

For discrete-time models, use absorbDelay to convert a time delay to factors
of 1/z where the time delay is an integer multiple of the sampling time. Use
thiran to approximate fractional time delays.

Related Examples

• “Time-Delay Approximation in Continuous-Time Open-Loop Model” on
page 2-30

• “Time-Delay Approximation in Continuous-Time Closed-Loop Model” on
page 2-34

• “Approximate Different Delays with Different Approximation Orders” on
page 2-39

• “Convert Time Delay to Factors of 1/z in Discrete-Time Model” on page 2-41

• “Fractional Time-Delay Approximation in Discrete-Time Model” on page
2-43

Time-Delay Approximation in Continuous-Time
Open-Loop Model
This example shows how to approximate delays in a continuous-time
open-loop system using pade.

Padé approximation is helpful when using analysis or design tools that do not
support time delays.

1 Create sample open-loop system with an output delay.

�� ����!�
������"�����

�

�

s = tf('s');
P = exp(-2.6*s)/(s^2+0.9*s+1);

2-30

Models with Time Delays

P is a second-order transfer function (tf) object with a time delay.

2 Compute the first-order Padé approximation of P.

Pnd1 = pade(P,1)

Pnd1 =

-s + 0.7692

s^3 + 1.669 s^2 + 1.692 s + 0.7692

Continuous-time transfer function.

This command replaces all time delays in Pwith a first-order approximation.
Therefore, Pnd1 is a third-order transfer function with no delays.

3 Compare the frequency response of the original and approximate models
using bodeplot.

h = bodeoptions;
h.PhaseMatching = 'on';
bodeplot(P,'-b',Pnd1,'-.r',{0.1,10},h)
legend('Exact delay','First-Order Pade','Location','SouthWest')

2-31

2 Model Creation

The magnitude of P and Pnd1 match exactly. However, the phase of Pnd1
deviates from the phase of P beyond approximately 1 rad/s.

4 Increase the Padé approximation order to extend the frequency band in
which the phase approximation is good.

Pnd3 = pade(P,3);

5 Compare the frequency response of P, Pnd1 and Pnd3.

bodeplot(P,'-b',Pnd3,'-.r',Pnd1,':k',{0.1 10},h)
legend('Exact delay','Third-Order Pade','First-Order Pade',...

'Location','SouthWest')

2-32

Models with Time Delays

The phase approximation error is reduced by using a third-order Padé
approximation.

6 Compare the time domain responses of the original and approximated
systems using step.

step(P,'-b',Pnd3,'-.r',Pnd1,':k')
legend('Exact delay','Third-Order Pade','First-Order Pade',...

'Location','Southeast')

2-33

2 Model Creation

Using the Padé approximation introduces a nonminimum phase artifact
(“wrong way” effect) in the initial transient response. The effect is reduced
in the higher-order approximation.

Note Using too high an approximation order may result in numerical
issues and possibly unstable poles. Therefore, avoid Padé approximations
with order N>10.

Time-Delay Approximation in Continuous-Time
Closed-Loop Model
This example shows how to approximate delays in a continuous-time
closed-loop system with internal delays, using pade.

2-34

Models with Time Delays

Padé approximation is helpful when using analysis or design tools that do not
support time delays.

1 Create sample continuous-time closed-loop system with an internal delay.

�

� �

�� ��#���

������!$�����
������

��!�� ���!�

Construct a model Tcl of the closed-loop transfer function from r to y.

s = tf('s');
G = (s+1)/(s^2+.68*s+1)*exp(-4.2*s);
C = pid(0.06,0.15,0.006);
Tcl = feedback(G*C,1);

Examine the internal delay of Tcl.

Tcl.InternalDelay

ans =

4.2000

2 Compute the first-order Padé approximation of Tcl.

Tnd1 = pade(Tcl,1);

Tnd1 is a state-space (ss) model with no delays.

3 Compare the frequency response of the original and approximate models.

h = bodeoptions;
h.PhaseMatching = 'on';
bodeplot(Tcl,'-b',Tnd1,'-.r',{.1,10},h);
legend('Exact delay','First-Order Pade','Location','SouthWest');

2-35

2 Model Creation

The magnitude and phase approximation errors are significant beyond
1 rad/s.

4 Compare the time domain response of Tcl and Tnd1 using step.

step(Tcl,'-b',Tnd1,'-.r');
legend('Exact delay','First-Order Pade','Location','SouthEast');

2-36

Models with Time Delays

Using the Padé approximation introduces a nonminimum phase artifact
(“wrong way” effect) in the initial transient response.

5 Increase the Padé approximation order to see if this will extend the
frequency with good phase and magnitude approximation.

Tnd3 = pade(Tcl,3);

6 Observe the behavior of the third-order Padé approximation of Tcl.
Compare the frequency response of Tcl and Tnd3.

bode(Tcl,'-b',Tnd3,'-.r',Tnd1,'--k',{.1,10},h);
legend('Exact delay','Third-Order Pade','First-Order Pade',...

'Location','SouthWest');

2-37

2 Model Creation

The magnitude and phase approximation errors are reduced when a
third-order Padé approximation is used.

Increasing the Padé approximation order extends the frequency band where
the approximation is good. However, too high an approximation order may
result in numerical issues and possibly unstable poles. Therefore, avoid Padé
approximations with order N>10.

More About

• “Internal Delays” on page 2-47

2-38

Models with Time Delays

Approximate Different Delays with Different
Approximation Orders
This example shows how to specify different Padé approximation orders
to approximate internal and output delays in a continuous-time open-loop
system.

1 Load sample continuous-time open-loop system that contains internal and
output time delays.

load PadeApproximation1 sys;

sys is a second-order continuous-time ss model with internal delay 3.4 s
and output delay 1.5 s.

Tip Enter get(sys) for more properties of sys.

2 Use pade to compute a third-order approximation of the internal delay and
a first-order approximation of the output delay.

P13 = pade(sys,inf,1,3);

The three input arguments following sys specify the approximation orders
of any input, output, and internal delays of sys, respectively. inf specifies
that a delay is not to be approximated. The approximation orders for the
output and internal delays are one and three respectively.

P13 is a sixth-order continuous-time ss model with no delays.

3 (Optional) For comparison, approximate only the internal delay of sys,
leaving the output delay intact.

P3 = pade(sys,inf,inf,3);

P3 is a fifth-order continuous-time ss model with an output delay of 1.5
s. The internal delay is approximated and absorbed into the state-space
matrices.

2-39

2 Model Creation

4 (Optional) Compare the frequency response of the exact and approximated
systems. sys, P13, P3.

h = bodeoptions;
h.PhaseMatching = 'on';
bode(sys,'b-',P13,'r-.',P3,'k--',h,{.01,10});
legend('Exact Output and Internal Time Delays',...

'Pade Approximation - First-order Output, ...
Third-order Internal Delays',...

'Pade Approximation - Third-order Internal Delay',...
'location','SouthWest')

2-40

Models with Time Delays

Convert Time Delay to Factors of 1/z in Discrete-Time
Model
This example shows how to convert a time delay in a discrete-time model
to factors of 1/z using absorbDelay.

In a discrete-time model, a time delay of one sampling interval is equivalent
to a factor of 1/z (a pole at z = 0) in the model. Therefore, time delays stored in
the InputDelay, OutputDelay, or ioDelay properties of a discrete-time model
can be rewritten in the model dynamics by rewriting them as poles at z = 0.
However, the additional poles increase the order of the system. Particularly
for large time delays, this can yield systems of very high order, leading to long
computation times or numerical inaccuracies.

To illustrate how to eliminate time delays in a discrete-time closed-loop model,
and to observe the effects of doing so, create the following closed-loop system:

�
� � ��

where G is a first-order discrete-time system with an input delay, and C is a
PI controller.

G = ss(0.9,0.125,0.08,0,'Ts',0.01,'InputDelay',7);
C = pid(6,90,0,0,'Ts',0.01);
T = feedback(C*G,1);

Examine the order and internal delay of T.

order(T)
T.InternalDelay

ans =

2

ans =

2-41

2 Model Creation

7

T is a second-order state-space model with an internal delay of 7 time steps.

Use absorbDelay to replace the internal delay by z-7.

Tnd = absorbDelay(T);

Examine the internal delay of Tnd.

Tnd.InternalDelay

ans =

Empty matrix: 0-by-1

Tnd has no internal delay, and the step response of Tnd exactly matches that
of T:

step(T,Tnd)

2-42

Models with Time Delays

However, Tnd is a ninth-order model, due to the seven extra poles introduced
by absorbing the seven-unit delay into the model.

order(Tnd)

ans =

9

Fractional Time-Delay Approximation in
Discrete-Time Model
Use the thiran command to approximate a time delay that is a fractional
multiple of the sampling time as a Thiran all-pass filter.

For a time delay of tau and a sampling time of Ts, the syntax thiran(tau,Ts)
creates a discrete-time transfer function that is the product of two terms:

2-43

2 Model Creation

• A term representing the integer portion of the time delay as a pure line
delay, (1/z)N, where N = ceil(tau/Ts).

• A term approximating the fractional portion of the time delay (tau - NTs)
as a Thiran all-pass filter.

Discretizing a Padé approximation does not guarantee good phase matching
between the continuous-time delay and its discrete approximation. Using
thiran to generate a discrete-time approximation of a continuous-time delay
can yield much better phase matching. For example, the following figure
shows the phase delay of a 10.2-second time delay discretized with a sample
time of 1 s, approximated in three ways:

• a first-order Padé approximation, discretized using the tustin method of
c2d

• an 11th-order Padé approximation, discretized using the tustin method of
c2d

• an 11th-order Thiran filter

The Thiran filter yields the closest approximation of the 10.2-second delay.

2-44

Models with Time Delays

See the thiran reference page for more information about Thiran filters.

Frequency Response Data (FRD) Model with Time
Delay
This example shows that absorbing time delays into frequency response data
can cause undesirable phase wrapping at high frequencies.

When you collect frequency response data for a system that includes time
delays, you can absorb the time delay into the frequency response as a
phase shift. Alternatively, if you are able to separate time delays from
your measured frequency response, you can represent the delays using the
InputDelay, OutputDelay, or ioDelay properties of the frd model object. The
latter approach can give better numerical results, as this example illustrates.

The frd model fsys includes a transport delay of 2 s. Load the model into the
MATLAB workspace and inspect the time delay with the following commands:

load frddelayexample fsys
fsys.ioDelay

A Bode plot of fsys shows the effect of the transport delay:

bodeplot(fsys)

2-45

2 Model Creation

The transport delay ioDelay = 2 introduces a rapid accumulation of phase
with increasing frequency.

The absorbDelay command absorbs all time delays directly into the frequency
response, resulting in an frd model with ioDelay = 0:

fsys2 = absorbDelay(fsys);
fsys2.ioDelay

Comparing the two ways of representing the delay shows that absorbing the
delay into the frequency response causes phase-wrapping.

bode(fsys,fsys2)

2-46

Models with Time Delays

Phase wrapping can introduce numerical inaccuracy at high frequencies or
where the frequency grid is sparse. For that reason, if your system takes the
form e–τsG(s), you might get better results by measuring frequency response
data for G(s) and using InputDelay, OutputDelay, or ioDelay to model the
time delay τ.

More About

• “Frequency Response Data (FRD) Models” on page 1-22

Internal Delays
Using the InputDelay, OutputDelay, and ioDelay properties, you can model
simple processes with transport delays. However, these properties cannot
model more complex situations, such as feedback loops with delays. In
addition to the InputDelay and OutputDelay properties, state-space (ss)
models have an InternalDelay property. This property lets you model
the interconnection of systems with input, output, or transport delays,
including feedback loops with delays. You can use InternalDelay property to

2-47

2 Model Creation

accurately model and analyze arbitrary linear systems with delays. Internal
delays can arise from the following:

• Concatenating state-space models with input and output delays

• Feeding back a delayed signal

• Converting MIMO tf or zpk models with transport delays to state-space
form

Using internal time delays, you can do the following:

• In continuous time, generate approximate-free time and frequency
simulations, because delays do not have to be replaced by a Padé
approximation. In continuous time, this allows for more accurate analysis
of systems with long delays.

• In discrete time, keep delays separate from other system dynamics, because
delays are not replaced with poles at z = 0, which boosts efficiency of time
and frequency simulations for discrete-time systems with long delays.

• Use most Control System Toolbox functions.

• Test advanced control strategies for delayed systems. For example, you
can implement and test an accurate model of a Smith predictor. See the
example Control of Processes with Long Dead Time: The Smith Predictor .

Why Internal Delays Are Necessary
This example illustrates why input, output, and transport delays not enough
to model all types of delays that can arise in dynamic systems. Consider the
simple feedback loop with a 2 s. delay:

���
� ��

The closed-loop transfer function is

2-48

Models with Time Delays

e

s e

s

s

−

−+ +

2

22

The delay term in the numerator can be represented as an output delay.
However, the delay term in the denominator cannot. In order to model the
effect of the delay on the feedback loop, the InternalDelay property is needed
to keep track of internal coupling between delays and ordinary dynamics.

Typically, you do not create state-space models with internal delays directly,
by specifying the A, B, C, and D matrices together with a set of internal
delays. Rather, such models arise when you interconnect models having
delays. There is no limitation on how many delays are involved and how the
models are connected. For an example of creating an internal delay by closing
a feedback loop, see “Closing Feedback Loops with Time Delays” on page 2-26.

Behavior of Models With Internal Delays
When you work with models having internal delays, be aware of the following
behavior:

• When a model interconnection gives rise to internal delays, the software
returns an ss model regardless of the interconnected model types. This
occurs because only ss supports internal delays.

• The software fully supports feedback loops. You can wrap a feedback loop
around any system with delays.

• When displaying the A, B, C, and D matrices, the software sets all delays
to zero (creating a zero-order Padé approximation). This approximation
occurs for the display only, and not for calculations using the model.

For some systems, setting delays to zero creates singular algebraic loops,
which result in either improper or ill-defined, zero-delay approximations.
For these systems:

- Entering sys returns only sizes for the matrices of a system named sys.

- Entering sys.a produces an error.

The limited display and the error do not imply a problem with the model
sys itself.

2-49

2 Model Creation

Inside Time Delay Models
State-space objects use generalized state-space equations to keep track of
internal delays. Conceptually, such models consist of two interconnected
parts:

• An ordinary state-space model H(s) with an augmented I/O set

• A bank of internal delays.

The corresponding state-space equations are:

x Ax t B u t B w t
y t C x t D u t D w t
z t C x

= + +
= + +
=

() () ()
() () () ()
() (

1 2

1 11 12

2 tt D u t D w t
w t z t j Nj j

) () ()
() (), ,...,

+ +
= − =

21 22

1τ

You need not bother with this internal representation to use the tools. If,
however, you want to extract H or the matrices A,B1,B2, ,... , you can use
getDelayModel, For the example:

P = 5*exp(-3.4*s)/(s+1);

2-50

Models with Time Delays

C = 0.1 * (1 + 1/(5*s));
T = feedback(ss(P*C),1);

[H,tau] = getDelayModel(T,'lft');
size(H)

Note that H is a two-input, two-output model whereas T is SISO. The
inverse operation (combining H and tau to construct T) is performed by
setDelayModel.

See [1], [2] for details.

Functions That Support Internal Time Delays
The following commands support internal delays for both continuous- and
discrete-time systems:

• All interconnection functions

• Time domain response functions—except for impulse and initial

• Frequency domain functions—except for norm

Limitations on Functions that Support Internal Time Delays. The
following commands support internal delays for both continuous- and
discrete-time systems and have certain limitations:

• allmargin, margin—Uses interpolation, therefore these commands are
only as precise as the fineness of the specified grid.

• pole, zero—Returns poles and zeros of the system with all delays set to
zero.

• ssdata, get—If an SS model has internal delays, these commands return
the A, B, C, and D matrices of the system with all internal delays set to zero.
Use getDelayModel to access the internal state-space representation of
models with internal delays.

Functions That Do Not Support Internal Time Delays
The following commands do not support internal time delays:

• System dynamics—norm and isstable

2-51

2 Model Creation

• Time-domain analysis—initial and initialplot

• Model simplification—balreal, balred, and modred

• Compensator design—rlocus, lqg, lqry, lqrd, kalman, kalmd, lqgreg,
lqgtrack, lqi, and augstate.

To use these functions on a system with internal delays, use pade to
approximate the internal delays. See “Time-Delay Approximation” on page
2-29.

References

[1] P. Gahinet and L.F. Shampine, "Software for Modeling and Analysis of
Linear Systems with Delays," Proc. American Control Conf., Boston, 2004,
pp. 5600-5605

[2] L.F. Shampine and P. Gahinet, Delay-differential-algebraic Equations in
Control Theory, Applied Numerical Mathematics, 56 (2006), pp. 574-588

2-52

Models with Parametric or Tunable Coefficients

Models with Parametric or Tunable Coefficients

In this section...

“Tunable Low-Pass Filter” on page 2-53

“Tunable Second-Order Filter” on page 2-54

“State-Space Model with Both Fixed and Tunable Parameters” on page 2-55

“Control System with Tunable Components” on page 2-56

Tunable Low-Pass Filter
This example shows how to create the low-pass filter F = a/(s + a) with one
tunable parameter a.

You cannot use ltiblock.tf to represent F, because the numerator and
denominator coefficients of an ltiblock.tf block are independent. Instead,
construct F using the tunable real parameter object realp.

1 Create a tunable real parameter.

a = realp('a',10);

The realp object a is a tunable parameter with initial value 10.

2 Use tf to create the tunable filter F:

F = tf(a,[1 a]);

F is a genss object which has the tunable parameter a in its Blocks property.
You can connect F with other tunable or numeric models to create more
complex models of control systems. For an example, see “Control System with
Tunable Components” on page 2-56.

More About

• “Models with Tunable Coefficients” on page 1-27

2-53

2 Model Creation

Tunable Second-Order Filter
This example shows how to create a parametric model of the second-order
filter:

F s
s s

n

n n

2

2 22
,

where the damping ζ and the natural frequency ωn are tunable parameters.

1 Define the tunable parameters using realp.

wn = realp('wn',3);
zeta = realp('zeta',0.8);

wn and zeta are realp parameter objects, with initial values 3 and 0.8,
respectively.

2 Create a model of the filter using the tunable parameters.

F = tf(wn^2,[1 2*zeta*wn wn^2])

The inputs to tf are the vectors of numerator and denominator coefficients
expressed in terms of wn and zeta.

F is a genss. The property F.Blocks lists the two tunable parameters
wn and zeta.

3 (Optional) Examine the number of tunable blocks in the model using
nblocks.

nblocks(F)

This command returns the result:

ans =

6

F has two tunable parameters, but the parameter wn appears five times —
twice in the numerator and three times in the denominator.

2-54

Models with Parametric or Tunable Coefficients

4 (Optional) Rewrite F for fewer occurrences of wn.

The second-order filter transfer function can be expressed as follows:

F s
s s

n n

1

2 1
2

.

Use this expression to create the tunable filter:

F = tf(1,[(1/wn)^2 2*zeta*(1/wn) 1])

5 (Optional) Examine the number of tunable blocks in the new filter model.

nblocks(F)

This command returns the result:

ans =

4

In the new formulation, there are only three occurrences of the tunable
parameter wn. Reducing the number of occurrences of a block in a model
can improve performance time of calculations involving the model.
However, the number of occurrences does not affect the results of tuning
the model or sampling it for parameter studies.

More About

• “Models with Tunable Coefficients” on page 1-27

State-Space Model with Both Fixed and Tunable
Parameters
This example shows how to create a state-space (genss) model having both
fixed and tunable parameters.

Create a state-space model having the following state-space matrices:

2-55

2 Model Creation

A
a b
ab

B C D

1
0

3 0
1 5

0 3 0 0,
.

.
, . , ,

where a and b are tunable parameters, whose initial values are –1 and 3,
respectively.

1 Create the tunable parameters using realp.

a = realp('a',-1);
b = realp('b',3);

2 Define a generalized matrix using algebraic expressions of a and b.

A = [1 a+b;0 a*b]

A is a generalized matrix whose Blocks property contains a and b. The
initial value of A is M = [1 2;0 -3], from the initial values of a and b.

3 Create the fixed-value state-space matrices.

B = [-3.0;1.5];
C = [0.3 0];
D = 0;

4 Use ss to create the state-space model.

sys = ss(A,B,C,D)

sys is a generalized LTI model (genss) with tunable parameters a and b.

More About

• “Models with Tunable Coefficients” on page 1-27

Control System with Tunable Components
This example shows how to create a tunable model of the control system in
the following illustration.

2-56

Models with Parametric or Tunable Coefficients

�
�

�������� �
�

	���

���

The plant response G(s) = 1/(s + 1)2. The model of sensor dynamics is
S(s) = 5/(s + 4). The controller C is a tunable PID controller, and the prefilter
F = a/(s + a) is a low-pass filter with one tunable parameter, a.

Create models representing the plant and sensor dynamics.

Because the plant and sensor dynamics are fixed, represent them using
numeric LTI models zpk and tf.

G = zpk([],[-1,-1],1);
S = tf(5,[1 4]);

Create a tunable representation of the controller C.

C = ltiblock.pid('C','PID');

C is a ltiblock.pid object, which is a Control Design Block with a predefined
proportional-integral-derivative (PID) structure. For more information about
predefined Control Design Blocks, see “Control Design Blocks” on page 1-14.

Create a model of the filter F = a/(s + a) with one tunable parameter.

a = realp('a',10);
F = tf(a,[1 a]);

a is a realp (real tunable parameter) object with initial value 10. Using a as a
coefficient in tf creates the tunable genss model object F.

Connect the models together to construct a model of the closed-loop response
from r to y.

T = feedback(G*C,S)*F

2-57

2 Model Creation

T is a genss model object. In contrast to an aggregate model formed by
connecting only Numeric LTI models, T keeps track of the tunable elements of
the control system. The tunable elements are stored in the Blocks property of
the genssmodel object. You can display the tunable elements of T by entering:

T.Blocks

ans =

C: [1x1 ltiblock.pid]
a: [1x1 realp]

If you have Robust Control Toolbox software, you can use tuning commands
such as systune to tune the free parameters of T to meet design requirements
you specify. See “Automated Tuning” in the Robust Control Toolbox
documentation.

More About

• “Models with Tunable Coefficients” on page 1-27

2-58

Model Arrays

Model Arrays

In this section...

“Model Arrays” on page 2-59

“One-Dimensional Model Array with Single Parameter Variation” on page
2-62

“Select Models from Array” on page 2-63

“Array With Variations in Two Parameters” on page 2-66

“Sample a Tunable (Parametric) Model for Parameter Studies” on page 2-68

Model Arrays

What Are Model Arrays?
In many applications, it is useful to consider collections multiple model
objects. For example, you may want to consider a model with a parameter
that varies across a range of values, such as

sys1 = tf(1, [1 1 1]);
sys2 = tf(1, [1 1 2]);
sys3 = tf(1, [1 1 3]);

and so on. Model arrays are a convenient way to store and analyze such a
collection. Model arrays are collections of multiple linear models, stored as
elements in a single MATLAB array.

For all models collected in a single model array, the following attributes must
be the same:

• The number of inputs and outputs

• The sample time Ts

• The time unit TimeUnit

Uses of Model Arrays
Uses of model arrays include:

2-59

2 Model Creation

• Representing and analyzing sensitivity to parameter variations

• Validating a controller design against several plant models

• Representing linear models arising from the linearization of a nonlinear
system at several operating points

• Storing models obtained from several system identification experiments
applied to one plant

Using model arrays, you can apply almost all of the basic model operations
that work on single model objects to entire sets of models at once. Functions
operate on arrays model by model, allowing you to manipulate an entire
collection of models in a vectorized fashion. You can also use analysis
functions such as bode, nyquist, and step to model arrays to analyze multiple
models simultaneously. You can access the individual models in the collection
through MATLAB array indexing.

Visualizing Model Arrays
To visualize the concept of a model array, consider the set of five transfer
function models shown below. In this example, each model has two inputs
and two outputs. They differ by parameter variations in the individual model
components.

Just as you might collect a set of two-by-two matrices in a multidimensional
array, you can collect this set of five transfer function models as a list in a
model array under one variable name, say, sys. Each element of the model
array is a single model object.

2-60

Model Arrays

Visualizing Selection of Models From Model Arrays
The following illustration shows how indexing selects models from a
one-dimensional model array. The illustration shows a 1-by-5 array sysa of
2-input, 2-output transfer functions.

The following illustration shows selection of models from the two-dimensional
model array m2d.

2-61

2 Model Creation

One-Dimensional Model Array with Single Parameter
Variation
This example shows how to create a one-dimensional array of transfer
functions using stack. One parameter of the transfer function varies from
model to model in the array.

You can use such an array to investigate the effect of parameter variation on
your model, such as for sensitivity analysis.

Create an array of transfer functions representing a low-pass filter

F s
a

s a

, at three values of the roll-off frequency a:

1 Create transfer function models representing the filter with roll-off
frequency at a = 3, 5, and 7.

F1 = tf(3,[1 3]);
F2 = tf(5,[1 5]);
F3 = tf(7,[1 7]);

2 Use stack to build an array.

Farray = stack(1,F1,F2,F3);

The first argument to stack specifies the array dimension along which
stack builds an array. The remaining arguments specify the models to
arrange along that dimension.

Farray is a 3-by-1 array of transfer functions.

Note Concatenating models with MATLAB array concatenation
commands, instead of with stack, creates multi-input, multi-output
(MIMO) models rather than model arrays. For example:

G = [F1;F2;F3]

creates a one-input, three-output transfer function model, not a 3-by-1
array.

2-62

Model Arrays

3 Plot the frequency response of the array to examine the effect of parameter
variation on the filter behavior.

bodeplot(Farray)

When you use analysis commands such as bodeplot on a model array, the
resulting plot shows the response of each model in the array. Therefore, you
can see the range of responses that results from the parameter variation.

Select Models from Array
This example shows how to select individual models or sets of models from a
model array using array indexing.

1 Load the transfer function array m2d into the MATLAB workspace.

load LTIexamples m2d

2-63

2 Model Creation

2 (Optional) Plot the step response of m2d.

step(m2d)

The step response shows that m2d contains six one-input, two-output
models. The step command plots all of the models in an array on a single
plot.

3 (Optional) Examine the dimensions of m2d.

arraydim = size(m2d)

This command produces the result:

arraydim =

2 1 2 3

• The first entries of arraydim, 2 and 1, show that m2d is an array of
two-output, one-input transfer functions.

• The remaining entries in arraydim give the array dimensions of m2d,
2-by-3.

2-64

Model Arrays

In general, the dimensions of a model array are [Ny,Nu,S1,...,Sk]. Ny
and Nu are the numbers of outputs and inputs of each model in the array.
S1,...,Sk are the array dimensions. Thus, Si is the number of models
along the ith array dimension.

4 Select the transfer function in the second row, first column of m2d.

To do so, use MATLAB array indexing.

sys = m2d(:,:,2,1)

Tip You can also access models using single index referencing of the array
dimensions. For example,

sys = m2d(:,:,4)

selects the same model as m2d(:,:,2,1).

5 Select the array of subsystems from the first input to the first output
of each model in m2d.

m11 = m2d(1,1,:,:)

6 (Optional) Plot the step response of m11.

step(m11)

2-65

2 Model Creation

The step response shows that m11 is an array of six single-input,
single-output (SISO) models.

Note For frequency response data (FRD) models, the array indices can
be followed by the keyword 'frequency' and some expression selecting a
subset of the frequency points, as in:

sys(outputs,inputs,n1,...,nk,'frequency',SelectedFreqs)

More About

• “Visualizing Selection of Models From Model Arrays” on page 2-61

Array With Variations in Two Parameters
This example shows how to create a two-dimensional (2-D) array of transfer
functions using for loops. One parameter of the transfer function varies in
each dimension of the array.

2-66

Model Arrays

You can use the technique of this example to create higher-dimensional arrays
with variations of more parameters. Such arrays are useful for studying the
effects of multiple-parameter variations on system response.

The second-order single-input, single-output (SISO) transfer function

H s
s s

() =
+ +

2

2 22
.

depends on two parameters—the damping ratio ζ and natural frequency ω.

If both ζ and ω vary, you obtain multiple transfer functions of the form:

H s
s s

ij
j

i j j

2

2 22
,

where ζi and ωj represent different measurements or sampled values of the
variable parameters.

You can collect all of these transfer functions in a single variable to create a
two-dimensional model array.

1 (Optional) Preallocate memory for the model array.

You can enhance computation efficiency by preallocating memory. To do
this, create an array of the required size and initialize its entries to zero.

H = tf(zeros(1,1,3,3));

In this example, there are three values for each parameter in the transfer
function H. Therefore, this command creates a 3-by-3 array of single-input,
single-output (SISO) zero transfer functions.

2 Create arrays containing the parameter values.

zeta = [0.66,0.71,0.75];
w = [1.0,1.2,1.5];

3 Build the array by looping through all combinations of parameter values.

2-67

2 Model Creation

for i = 1:length(zeta)
for j = 1:length(w)

H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);
end

end

H is a 3-by-3 array of transfer functions. ζ varies as you move from model
to model along a single column of H. The parameter ω varies as you move
along a single row. Plotting the step response of H shows how the parameter
variation affects the step response.

step(H)

Sample a Tunable (Parametric) Model for Parameter
Studies
This example shows how to sample a parametric model of a second-order filter
across a grid of parameter values using replaceBlock.

1 Create a tunable (parametric) model of the second-order filter:

2-68

Model Arrays

F s
s s

n

n n

2

2 22
,

where the damping ζ and the natural frequency ωn are the parameters.

wn = realp('wn',3);
zeta = realp('zeta',0.8);
F = tf(wn^2,[1 2*zeta*wn wn^2]);

F is a genss model with two tunable Control Design Blocks, the realp
blocks wn and zeta. The blocks wn and zeta have initial values of 3 and
0.8, respectively.

2 Sample F over a 2-by-3 grid of (wn,zeta) values.

Fsample = replaceBlock(F,'wn',[3;5],'zeta',[0.6 0.8 1.0]);

Fsample is 2-by-3 array of state-space models.

3 (Optional) Plot the step response of Fsample.

step(Fsample)

2-69

2 Model Creation

The step response plot show the variation in the natural frequency and
damping constant across the six models in the array Fsample.

More About

• “Models with Tunable Coefficients” on page 1-27

2-70

Working with Linear Models

• Chapter 3, “Data Manipulation”

• Chapter 4, “Model Interconnections”

• Chapter 5, “Model Transformation”

3

Data Manipulation

• “Model Properties” on page 3-2

• “Extract Model Coefficients” on page 3-5

• “Attach Metadata to Models” on page 3-9

• “Query Model Characteristics” on page 3-14

• “Customize Model Display” on page 3-17

3 Data Manipulation

Model Properties

In this section...

“Model Properties” on page 3-2

“Specify Model Properties at Model Creation” on page 3-2

“Examine and Specify Properties of an Existing Model” on page 3-3

Model Properties
Model properties are data fields that let you specify model attributes, such as
coefficients, sampling time, and metadata such as channel names.

For help on the properties associated with each model type,
see the corresponding reference page. Alternatively, enter help
modeltype.propertyname at the command line. For example:

help ss.StateName

Related Examples

• “Examine and Specify Properties of an Existing Model” on page 3-3

• “Specify Model Properties at Model Creation” on page 3-2

Specify Model Properties at Model Creation
This example shows how to specify transfer function model properties when
you create the model. You can use the technique of this example to access and
set properties of any type of model.

To specify model properties at model creation, use Name,Value pair syntax.
For example, assign a transport delay and an output name to a new transfer
function model:

H = tf(1,[1 10],'ioDelay',6.5,'OutputName','velocity')

3-2

Model Properties

Examine and Specify Properties of an Existing Model
This example shows how to examine and specify properties of an existing ss
model using get, set, and dot notation. You can use the techniques of this
example to examine and specify properties of any type of model.

1 Load an existing model object.

load PadeApproximation1 sys;

sys is a state-space (ss) model.

2 Examine the current property values.

get(sys)

This command displays all the properties of sys.

a: [2x2 double]
b: [2x1 double]
c: [0.5000 0.1000]
d: 0
e: []

Scaled: 0
StateName: {2x1 cell}
StateUnit: {2x1 cell}

InternalDelay: 3.4000
InputDelay: 0

OutputDelay: 1.5000
Ts: 0

TimeUnit: 'seconds'
InputName: {''}
InputUnit: {''}

InputGroup: [1x1 struct]
OutputName: {''}
OutputUnit: {''}

OutputGroup: [1x1 struct]
Name: ''

Notes: {}
UserData: []

3 Specify input delay and channel names.

3-3

3 Data Manipulation

You can use dot notation to directly reference property values.

sys.InputDelay = 4.2;
sys.InputName = 'thrust';
sys.OutputName = 'velocity';

Alternatively, you can use the set command to specify property values.

set(sys,'InputDelay',4.2,'InputName','thrust',...
'OutputName','velocity');

Caution Changing certain properties, such as Ts and TimeUnits,
can cause undesirable changes in system behavior. See the property
descriptions in the model reference pages for more information.

3-4

Extract Model Coefficients

Extract Model Coefficients

In this section...

“Functions for Extracting Model Coefficients” on page 3-5

“Extracting Coefficients of Different Model Type” on page 3-5

“Extract Numeric Model Data and Time Delay” on page 3-6

“Extract PID Gains from Transfer Function” on page 3-7

Functions for Extracting Model Coefficients
Control System Toolbox software includes several commands for extracting
model coefficients such as transfer function numerator and denominator
coefficients, state-space matrices, and proportional-integral-derivative (PID)
gains.

The following commands are available for data extraction.

Command Result

tfdata Extract transfer function coefficients

zpkdata Extract zero and pole locations and system gain

ssdata Extract state-space matrices

dssdata Extract descriptor state-space matrices

frdata Extract frequency response data from frd
model

piddata Extract parallel-form PID data

pidstddata Extract standard-form PID data

get Access all model property values

Extracting Coefficients of Different Model Type
When you use a data extraction command on a model of a different type, the
software computes the coefficients of the target model type. For example, if

3-5

3 Data Manipulation

you use zpkdata on a ss model, the software converts the model to zpk form
and returns the zero and pole locations and system gain.

Extract Numeric Model Data and Time Delay
This example shows how to extract transfer function numerator and
denominator coefficients using tfdata.

1 Create a first-order plus dead time transfer function model.

H = exp(-2.5*s)/(s+12);

2 Extract the numerator and denominator coefficients.

[num,den] = tfdata(H,'v')

The variables num and den are numerical arrays. Without the 'v' flag,
tfdata returns cell arrays.

Note For SISO transfer function models, you can also extract coefficients
using:

num = H.num{1};
den = H.den{1};

3 Extract the time delay.

a Determine which property of H contains the time delay.

In a SISO tf model, you can express a time delay as an input delay, an
output delay, or a transport delay (I/O delay).

get(H)

This command returns:

num: {[0 1]}
den: {[1 12]}

Variable: 's'

3-6

Extract Model Coefficients

ioDelay: 0
InputDelay: 0

OutputDelay: 2.5000
Ts: 0

TimeUnit: 'seconds'
InputName: {''}
InputUnit: {''}

InputGroup: [1x1 struct]
OutputName: {''}
OutputUnit: {''}

OutputGroup: [1x1 struct]
Name: ''

Notes: {}
UserData: []

The time delay is stored in the OutputDelay property.

b Extract the output delay.

delay = H.OutputDelay;

Extract PID Gains from Transfer Function
This example shows how to extract PID (proportional-integral-derivative)
gains from a transfer function using piddata. You can use the same steps to
extract PID gains from a model of any type that represents a PID controller,
using piddata or pidstddata.

1 Create a transfer function that represents a PID controller with a
first-order filter on the derivative term.

Czpk = zpk([-6.6,-0.7],[0,-2],0.2)

2 Obtain the PID gains and filter constant.

[Kp,Ki,Kd,Tf] = piddata(Czpk)

This command returns the proportional gain Kp, integral gain Ki,
derivative gain Kd, and derivative filter time constant Tf. Because piddata
automatically computes the PID controller parameters, you can extract the
PID coefficients without creating a pid model.

3-7

3 Data Manipulation

More About

• “PID Controllers” on page 1-23

3-8

Attach Metadata to Models

Attach Metadata to Models

In this section...

“Specify Model Time Units” on page 3-9

“Interconnect Models with Different Time Units” on page 3-10

“Specify Frequency Units of Frequency-Response Data Model” on page 3-10

“Extract Subsystems of Multi-Input, Multi-Output (MIMO) Models” on
page 3-11

“Specify and Select Input and Output Groups” on page 3-12

Specify Model Time Units
This example shows how to specify time units of a transfer function model.

The TimeUnit property of the tf model object specifies units of the time
variable, time delays (for continuous-time models), and the sampling time Ts
(for discrete-time models). The default time units is seconds.

Create a SISO transfer function model sys
s

s s

4 2

3 102
with time units

in milliseconds:

num = [4 2];
den = [1 3 10];
sys = tf(num,den,'TimeUnit','milliseconds');

You can specify the time units of any dynamic system in a similar way.

The system time units appear on the time- and frequency-domain plots. For
multiple systems with different time units, the units of the first system are
used if the time and frequency units in the “Toolbox Preferences Editor” on
page 12-2 are auto.

3-9

3 Data Manipulation

Note Changing the TimeUnit property changes the system behavior. If
you want to use different time units without modifying system behavior,
use chgTimeUnit.

Interconnect Models with Different Time Units
This example shows how to interconnect transfer function models with
different time units.

To interconnect models using arithmetic operations or interconnection
commands, the time units of all models must match.

1 Create two transfer function models with time units of milliseconds and
seconds, respectively.

sys1 = tf([1 2],[1 2 3],'TimeUnit','milliseconds');
sys2 = tf([4 2],[1 3 10]);

2 Change the time units of sys2 to milliseconds.

sys2 = chgTimeUnit(sys2,'milliseconds');

3 Connect the systems in parallel.

sys = sys1+sys2;

Specify Frequency Units of Frequency-Response Data
Model
This example shows how to specify units of the frequency points of a
frequency-response data model.

The FrequencyUnit property specifies units of the frequency vector in the
Frequency property of the frd model object. The default frequency units are
rad/TimeUnit, where TimeUnit is the time unit specified in the TimeUnit
property.

Create a SISO frequency-response data model with frequency data in GHz.

load AnalyzerData;

3-10

Attach Metadata to Models

sys = frd(resp,freq,'FrequencyUnit','GHz');

You can independently specify the units in which you measure the frequency
points and sample time in the FrequencyUnit and TimeUnit properties,
respectively. You can also specify the frequency units of a genfrd in a similar
way.

The frequency units appear on the frequency-domain plots. For multiple
systems with different frequency units, the units of the first system are used if
the frequency units in the “Toolbox Preferences Editor” on page 12-2 is auto.

Note Changing the FrequencyUnit property changes the system behavior.
If you want to use different frequency units without modifying system
behavior, use chgFreqUnit.

Extract Subsystems of Multi-Input, Multi-Output
(MIMO) Models
This example shows how to extract subsystems of a MIMO model using
MATLAB indexing and using channel names.

Extracting subsystems is useful when, for example, you want to analyze a
portion of a complex system.

Create a MIMO transfer function.

G1 = tf(3,[1 10]);
G2 = tf([1 2],[1 0]);
G = [G1,G2];

Extract the subsystem of G from the first input to all outputs.

Gsub = G(:,1);

This command uses MATLAB indexing to specify a subsystem as G(out,in),
where out specifies the output indices and in specifies the input indices.

3-11

3 Data Manipulation

Using channel names, you can use MATLAB indexing to extract all the
dynamics relating to a particular channel. By using this approach, you can
avoid having to keep track of channel order in a complex MIMO model.

Assign names to the model inputs.

G.InputName = {'temperature';'pressure'};

Because G has two inputs, use a cell array of two strings to specify the channel
names.

Extract the subsystem of G that contains all dynamics from the 'temperature'
input to all outputs.

Gt = G(:,'temperature');

Gt is the same subsystem as Gsub.

Note When you extract a subsystem from a state-space (ss) model, the
resulting state-space model may not be minimal. Use sminreal to eliminate
unnecessary states in the subsystem.

Specify and Select Input and Output Groups
This example shows how to specify groups of input and output channels in a
model object and extract subsystems using the groups.

Input and output groups are useful for keeping track of inputs and outputs in
complex MIMO models.

1 Create a state-space model with three inputs and four outputs.

H = rss(3,4,3);

2 Group the inputs as follows:

• Inputs 1 and 2 in a group named controls

• Outputs 1 and 3 to a group named temperature

• Outputs 1, 3, and 4 to a group named measurements

3-12

Attach Metadata to Models

H.InputGroup.controls = [1 2];
H.OutputGroup.temperature = [1 3];
H.OutputGroup.measurements = [1 3 4];

InputGroup and OutputGroup are structures. The name of each field in the
structure is the name of the input or output group. The value of each field
is a vector that identifies the channels in that group.

3 Extract the subsystem corresponding to the controls inputs and the
temperature outputs.

You can use group names to index into subsystems.

Hc = H('temperature','controls')

Hc is a two-input, two-output ss model containing the I/O channels from
the 'controls' input to the 'temperature' outputs.

You can see the relationship between H and the subsystem Hc in this
illustration.

%
�
�

�

�
�
�
#

�������� �&��&�'���&

%�

3-13

3 Data Manipulation

Query Model Characteristics

In this section...

“Query Model Dynamics” on page 3-14

“Query Array Size” on page 3-15

How to query model characteristics such as stability, time domain, and
number of inputs and outputs.

Query Model Dynamics
This example shows how to query model dynamics such as stability, time
domain, and model order. You can use the techniques of this example on
type of model.

1 Load a saved state-space model.

load queryexample.mat T;

2 Query whether T has stable dynamics.

isstable(T)

The isstable command returns a Boolean value of 1 (true) if all system
poles are in the open left-half plane (for continuous-time models) or inside
the open unit disk (for discrete-time models). Otherwise, isstable returns
0 (false).

3 Query whether T has any time delays.

hasdelay(T)

This command returns 1, which indicates that T has a time delay. For a
state-space model, time delay can be stored as input delay, output delay,
or internal delay. Use get(T) to determine which properties of T hold the
time delay.

4 Query whether T is proper.

isproper(T)

3-14

Query Model Characteristics

This command returns 1, if the system has relative degree ≤ 0.

5 Query the order of T.

order(T)

For a state-space model, order returns the number of states. For a tf or
zpk model, the order is the number of states required for a state-space
realization of the system.

6 Query whether T is a discrete-time model.

isdt(T)

This command returns 1, indicating that T is a discrete-time model.
Similarly, you can use isct to query whether T is a continuous-time model.

Query Array Size
This example shows how to query the size of model arrays, including the
number of inputs and outputs and the number of models in an array.

You can also use these commands on individual models.

1 Load a saved model array.

load queryexample sysarr

2 Query the array dimensions.

size(sysarr)

This command displays the array size, and the number of inputs, outputs,
and states of the models in the array.

Alternatively, to obtain the array dimensions as a numeric array, use size
with an output argument.

dims = size(sysarr)

This command produces the result:

dims =

3-15

3 Data Manipulation

3 1 2 4

The first two entries 3,1 are the number of outputs and inputs, respectively.
The remaining entries 2,4 are the array dimensions.

Tip To query the number of array dimensions, use ndims.

3 Query the number of models in the array.

N = nmodels(sysarr)

Because sysarr is a 2-by-4 array, this command returns a result of 2 × 4 = 8.

4 Query whether the models in sysarr are single-input, single-output (SISO).

issiso(sysarr)

The command issiso returns a Boolean value of 1 (true) if the models in
the array are SISO, and 0 (false) if the models are not SISO.

5 Query the number of inputs and outputs in the models in the array using
iosize.

ios = iosize(sysarr)

This command returns a numeric array containing the number of outputs
and inputs of the models in the array.

Related Examples

• “Select Models from Array” on page 2-63

3-16

Customize Model Display

Customize Model Display
How to customize the MATLAB screen display of transfer function models.

In this section...

“Configure Transfer Function Display Variable” on page 3-17

“Configure Display Format of Transfer Function in Factorized Form” on
page 3-18

Configure Transfer Function Display Variable
This example shows how to configure the display variable of transfer function
(tf) models.

You can use the same steps to configure the display variable of transfer
function models in factorized form (zpk models).

By default, tf and zpk models are displayed in terms of s in continuous time
and z in discrete time. Use the Variable property change the display variable
to 'p' (equivalent to 's'), 'q' (equivalent to 'z'), 'z^-1', or 'q^-1'.

1 Create the discrete-time transfer function H z
z

z z

1

3 22

with a sampling time of 1 s.

H = tf([1 -1],[1 -3 2],0.1)

H =

z - 1

z^2 - 3 z + 2

Sample time: 0.1 seconds
Discrete-time transfer function.

The default display variable is z.

3-17

3 Data Manipulation

2 Change the display variable to q^-1.

H.Variable = 'q^-1'

H =

q^-1 - q^-2

1 - 3 q^-1 + 2 q^-2

Sample time: 0.1 seconds
Discrete-time transfer function.

When you change the Variable property, the software computes new
coefficients and displays the transfer function in terms of the new variable.
The num and den properties are automatically updated with the new
coefficients.

Tip Alternatively, you can directly create the same transfer function
expressed in terms of 'q^-1'.

H = tf([0 1 -1],[1 -3 2],0.1,'Variable','q^-1');

For the inverse variables 'z^-1' and 'q^-1', tf interprets the numerator and
denominator arrays as coefficients of ascending powers of 'z^-1' or 'q^-1'.

Configure Display Format of Transfer Function in
Factorized Form
This example shows how to configure the display of transfer function models
in factorized form (zpk models).

You can configure the display of the factorized numerator and denominator
polynomials to highlight:

• The numerator and denominator roots

• The natural frequencies and damping ratios of each root

• The time constants and damping ratios of each root

3-18

Customize Model Display

See the DisplayFormat property on the zpk reference page for more
information about these quantities.

1 Create a zpk model having a zero at s = 5, a pole at s = –10, and a pair of
complex poles at s = –3 ± 5i.

H = zpk(5,[-10,-3-5*i,-3+5*i],10)

H =

10 (s-5)

(s+10) (s^2 + 6s + 34)

Continuous-time zero/pole/gain model.

The default display format, 'roots', displays the standard factorization
of the numerator and denominator polynomials.

2 Configure the display format to display the natural frequency of each
polynomial root.

H.DisplayFormat = 'frequency'

H =

-0.14706 (1-s/5)

(1+s/10) (1 + 1.029(s/5.831) + (s/5.831)^2)

Continuous-time zero/pole/gain model.

You can read the natural frequencies and damping ratios for each pole
and zero from the display as follows:

• Factors corresponding to real roots are displayed as (1 – s/ω0). The
variable ω0 is the natural frequency of the root. For example, the natural
frequency of the zero of H is 5.

• Factors corresponding to complex pairs of roots are displayed as
1 – 2ζ(s/ω0) + (s/ω0)

2. The variable ω0 is the natural frequency, and ζ is

3-19

3 Data Manipulation

the damping ratio of the root. For example, the natural frequency of the
complex pole pair is 5.831, and the damping ratio is 1.029/2.

3 Configure the display format to display the time constant of each pole and
zero.

H.DisplayFormat = 'time constant'

H =

-0.14706 (1-0.2s)

(1+0.1s) (1 + 1.029(0.1715s) + (0.1715s)^2)

Continuous-time zero/pole/gain model.

You can read the time constants and damping ratios from the display as
follows:

• Factors corresponding to real roots are displayed as (τs). The variable
τ is the time constant of the root. For example, the time constant of
the zero of H is 0.2.

• Factors corresponding to complex pairs of roots are displayed as 1 – 2ζ(τs)
+ (τs)2. The variable τ is the time constant, and ζ is the damping ratio
of the root. For example, the time constant of the complex pole pair is
0.1715, and the damping ratio is 1.029/2.

3-20

4

Model Interconnections

• “Why Interconnect Models?” on page 4-2

• “Catalog of Model Interconnections” on page 4-3

• “Arithmetic Operations” on page 4-5

• “Numeric Model of SISO Feedback Loop” on page 4-6

• “Tunable Model of SISO Feedback Loop” on page 4-8

• “Multi-Loop Control System” on page 4-10

• “MIMO Control System” on page 4-13

• “MIMO Feedback Loop” on page 4-16

• “How the Software Determines Properties of Connected Models” on page
4-20

• “Precedence Rules That Determine Model Type” on page 4-22

• “Recommended Model Type for Building Block Diagrams” on page 4-23

4 Model Interconnections

Why Interconnect Models?
Interconnecting models of components allows you to construct models of
control systems. You can conceptualize your control system as a block
diagram containing multiple interconnected components, such as a plant
or a controller. Using model arithmetic or interconnection commands, you
combine models of each of these components into a single model representing
the entire block diagram.

For example, you can interconnect dynamic system models of a plant G(s), a
controller C(s), sensor dynamics S(s), and a filter F(s) to construct a single
model that represents the entire closed-loop control system in the following
illustration:

�
�

�������� �
�

	���

���

4-2

Catalog of Model Interconnections

Catalog of Model Interconnections
Each type of block diagram connection correspond to a model interconnection
command or arithmetic expression. The following table summarizes the block
diagram connections with the corresponding interconnection command and
arithmetic expression.

Block Diagram Connection Command Arithmetic
Expression

%�� �%�
series(H1,H2) H2*H1

�
%�

� �
�

%�

parallel(H1,H2) H1+H2

�
%�

� �
�

%�

parallel(H1,-H2) H1-H2

�
%�� �

�

%�

feedback(H1,H2) H1/(1+H2*H1) (not
recommended)

%�� �%���
N/A H1/H2 (division)

4-3

4 Model Interconnections

Block Diagram Connection Command Arithmetic
Expression

%�� �%���
N/A H1\H2 (left division)

� �%���
inv(H1) N/A

%�

%�

��

��

(�

(�

� �

lft(H1,H2,nu,ny) N/A

Use connect to build arbitrary block diagram interconnections.

Related Examples

• “Numeric Model of SISO Feedback Loop” on page 4-6

• “Tunable Model of SISO Feedback Loop” on page 4-8

• “Multi-Loop Control System” on page 4-10

• “MIMO Control System” on page 4-13

• “MIMO Feedback Loop” on page 4-16

4-4

Arithmetic Operations

Arithmetic Operations
You can apply almost all arithmetic operations to dynamic system models,
including those shown below.

Operation Description

+ Addition

- Subtraction

* Multiplication

.* Element-by-element multiplication

/ Right matrix divide

\ Left matrix divide

inv Matrix inversion

' Pertransposition

.' Transposition

^ Powers of a dynamic system model (as in s^2)

4-5

4 Model Interconnections

Numeric Model of SISO Feedback Loop
This example shows how to interconnect “Numeric LTI Models” on page 1-18
representing multiple system components to build a single numeric model of a
closed-loop system, using model arithmetic and interconnection commands.

Construct a model of the following single-loop control system.

�
�

�������� �
�

	���

���

The feedback loop includes a plant G(s), a controller C(s), and a representation
of sensor dynamics, S(s). The system also includes a prefilter F(s).

1 Create model objects representing each of the components.

G = zpk([],[-1,-1],1);
C = pid(2,1.3,0.3,0.5);
S = tf(5,[1 4]);
F = tf(1,[1 1]);

The plant G is a zero-pole-gain (zpk) model with a double pole at s =
–1. Model object C is a PID controller. The models F and S are transfer
functions.

2 Connect the controller and plant models.

H = G*C;

To combine models using the multiplication operator *, enter the models
in reverse order compared to the block diagram.

4-6

Numeric Model of SISO Feedback Loop

Tip Alternatively, construct H(s) using the series command:

H = series(C,G);

3 Construct the unfiltered closed-loop response T s
H
HS

1

.

T = feedback(H,S);

Caution Do not use model arithmetic to construct T algebraically:

T = H/(1+H*S)

This computation duplicates the poles of H, which inflates the model order
and might lead to computational inaccuracy.

4 Construct the entire closed-loop system response from r to y.

T_ry = T*F;

T_ry is a Numeric LTI Model representing the aggregate closed-loop system.
T_ry does not keep track of the coefficients of the components G, C, F, and S.

You can operate on T_ry with any Control System Toolbox control design or
analysis commands.

4-7

4 Model Interconnections

Tunable Model of SISO Feedback Loop
This example shows how to create a tunable model of the control system in
the following illustration.

�
�

�������� �
�

	���

���

The plant response G(s) = 1/(s + 1)2. The model of sensor dynamics is
S(s) = 5/(s + 4). The controller C is a tunable PID controller, and the prefilter
F = a/(s + a) is a low-pass filter with one tunable parameter, a.

Create models representing the plant and sensor dynamics.

Because the plant and sensor dynamics are fixed, represent them using
numeric LTI models zpk and tf.

G = zpk([],[-1,-1],1);
S = tf(5,[1 4]);

Create a tunable representation of the controller C.

C = ltiblock.pid('C','PID');

C is a ltiblock.pid object, which is a Control Design Block with a predefined
proportional-integral-derivative (PID) structure. For more information about
predefined Control Design Blocks, see “Control Design Blocks” on page 1-14.

Create a model of the filter F = a/(s + a) with one tunable parameter.

a = realp('a',10);
F = tf(a,[1 a]);

a is a realp (real tunable parameter) object with initial value 10. Using a as a
coefficient in tf creates the tunable genss model object F.

4-8

Tunable Model of SISO Feedback Loop

Connect the models together to construct a model of the closed-loop response
from r to y.

T = feedback(G*C,S)*F

T is a genss model object. In contrast to an aggregate model formed by
connecting only Numeric LTI models, T keeps track of the tunable elements of
the control system. The tunable elements are stored in the Blocks property of
the genssmodel object. You can display the tunable elements of T by entering:

T.Blocks

ans =

C: [1x1 ltiblock.pid]
a: [1x1 realp]

If you have Robust Control Toolbox software, you can use tuning commands
such as systune to tune the free parameters of T to meet design requirements
you specify. See “Automated Tuning” in the Robust Control Toolbox
documentation.

4-9

4 Model Interconnections

Multi-Loop Control System
This example shows how to build an arbitrary block diagram by connecting
models using connect. The system is a Smith Predictor, the single-input,
single-output (SISO) multi-loop control system shown in the following block
diagram.

�
��

&� �

	

)�

*

�

�

�

�

���

� �

��

+�+�

��

��
����

����
����

For more information about the Smith Predictor, see Control of Processes
with Long Dead Time: The Smith Predictor.

The connect command lets you construct the overall transfer function from
ysp to y. To use connect, specify the input and output channel names of the
components of the block diagram. connect automatically joins ports that have
the same name, as shown in the following figure.

,�

,�

&����

&����

,�

,�&����

���������	
���

To build the closed loop model of the Smith Predictor system from ysp to y:

1 Create the components of the block diagram: the process model P, the
predictor model Gp, the delay model Dp, the filter F, and the PI controller

4-10

Multi-Loop Control System

C. Specify names for the input and output channels of each model so that
connect can automatically join them to build the block diagram.

s = tf('s');

P = exp(-93.9*s) * 5.6/(40.2*s+1);
P.InputName = 'u'; P.OutputName = 'y';

Gp = 5.6/(40.2*s+1);
Gp.InputName = 'u'; Gp.OutputName = 'yp';

Dp = exp(-93.9*s);
Dp.InputName = 'yp'; Dp.OutputName = 'y1';

F = 1/(20*s+1);
F.InputName = 'dy'; F.OutputName = 'dp';

C = pidstd(0.574,40.1);
C.Inputname = 'e'; C.OutputName = 'u';

2 Create the summing junctions needed to complete the block diagram.

sum1 = sumblk('e = ysp - ym');
sum2 = sumblk('ym = yp + dp');
sum3 = sumblk('dy = y - y1');

The argument to sumblk is a formula specified as a string. This string
relates the input and output signals of the summing junction. sumblk
creates a summing junction with the input and output signal names
specified in the formula. For example, in sum1, the string 'e = ysp - ym'
specifies an output signal named e, which is the difference between input
signals named ysp and ym.

3 Assemble the complete model from ysp to y.

T = connect(P,Gp,Dp,C,F,sum1,sum2,sum3,'ysp','y');

You can list the models and summing junctions in any order because
connect automatically interconnects them using their input and output
channel names.

4-11

4 Model Interconnections

The last two arguments specify the input and output signals of the
multi-loop control structure. Thus, T is a ss model with input ysp and
output y.

4-12

MIMO Control System

MIMO Control System
This example shows how to build a MIMO control system using connect to
interconnect Numeric LTI models and tunable Control Design Blocks.

Consider the following two-input, two-output control system.

��

��

� �� �

�
�

�

�

��

��

�

The plant G is a distillation column with two inputs and two outputs. The two
inputs are the reflux L and boilup V. The two outputs are the concentrations
of two chemicals, represented by the vector signal y = [y1,y2]. You can
represent this plant model as:

G s
s

1
75 1

87 8 86 4
108 2 109 6

. .
. .

.

The vector setpoint signal r = [r1,r2] specifies the desired concentrations of the
two chemicals. The vector error signal e represents the input to D, a static
2-by-2 decoupling matrix. CL and CV represent independent PI controllers
that control the two inputs of G.

To create a two-input, two-output model representing this closed-loop control
system:

1 Create a Numeric LTI model representing the 2-by-2 plant G.

s = tf('s','TimeUnit','minutes');
G = [87.8 -86.4 ; 108.2 -109.6]/(75*s+1);
G.InputName = {'L','V'};
G.OutputName = 'y';

4-13

4 Model Interconnections

When you construct the closed-loop model, connect uses the input and
output names to form connections between the block diagram components.
Therefore, you must assign names to the inputs and outputs of the transfer
function G in either of the following ways: .

• You can assign input and output names to individual signals by
specifying signal names in a cell array, as in G.InputName = {'L','V'}

• Alternatively, you can use vector signal naming, which the software
automatically expands. For example, the command G.OutputName =
'y' assigns the names 'y(1)' and 'y(2)' to the outputs of G.

2 Create tunable Control Design Blocks representing the decoupling matrix
D and the PI controllers CL and CV.

D = ltiblock.gain('Decoupler',eye(2));
D.u = 'e';
D.y = {'pL','pV'};

C_L = ltiblock.pid('C_L','pi'); C_L.TimeUnit = 'minutes';
C_L.u = 'pL'; C_L.y = 'L';

C_V = ltiblock.pid('C_V','pi'); C_V.TimeUnit = 'minutes';
C_V.u = 'pV'; C_V.y = 'V';

Note u and y are shorthand notations for the InputName and OutputName
properties, respectfully. Thus, for example, entering:

D.u = 'e';
D.y = {'pL','pV'};

is equivalent to entering:

D.InputName = 'e';
D.OutputName = {'pL','pV'};

3 Create the summing junction.

4-14

MIMO Control System

The summing junction produces the error signals e by taking the difference
between r and y.

Sum = sumblk('e = r - y',2);

Sum represents the transfer function for the summing junction described
by the formula string 'e = r - y'. The second argument to sumblk
specifies that the inputs and outputs of Sum are each vector signals
of length 2. The software therefore automatically assigns the signal
names {'r(1)','r(2)','y(1)','y(2)'} to Sum.InputName and
{'e(1)','e(2)'} to Sum.OutputName.

4 Join all components to build the closed-loop system from r to y.

CLry = connect(G,D,C_L,C_V,Sum,'r','y');

The arguments to the connect function include all the components of the
closed-loop system, in any order. connect automatically combines the
components using the input and output names to join signals.

The last two arguments to connect specify the output and input signals of
the closed-loop model, respectively. The resulting genss model CLry has
two-inputs and two outputs.

4-15

4 Model Interconnections

MIMO Feedback Loop
This example shows three ways to obtain the closed-loop response from Azref
to Az of the MIMO feedback loop of the following block diagram.

-&

.&

/'�0

1��0'

2

1(
1�����+&

30�

'

40����

	��

1&��+��

/'�0

1��0'

2

1(

1(�&� 	��

1��������

You can compute the closed-loop response using one of the following three
approaches:

• Name-based interconnection with connect

• Name-based interconnection with feedback

• Index-based interconnection with feedback

You can use whichever of these approaches is most convenient for your
application.

Load the plant Aerodyn and the controller Autopilot.

load MIMOfeedback.mat Aerodyn Autopilot

Aerodyn is a 4-input, 7-output state-space (ss) model. Autopilot is a 5-input,
1-output ss model. The inputs and outputs of both models names appear as
shown in the block diagram.

Compute the closed-loop response from Azref to Az using connect.

4-16

MIMO Feedback Loop

T1 = connect(Autopilot,Aerodyn,'Azref','Az');

The connect function combines the models by joining the inputs and outputs
that have matching names. The last two arguments to connect specify the
input and output signals of the resulting model. Therefore, T1 is a state-space
model with input Azref and output Az.

Compute the closed-loop response from Azref to Az using name-based
interconnection with the feedback command. Use the model input and output
names to specify the interconnections between Aerodyn and Autopilot.

When you use the feedback function, think of the closed-loop system as a
feedback interconnection between an open-loop plant-controller combination L
and a diagonal unity-gain feedback element K. The following block diagram
shows this interconnection.

-&

.&

/'�0

1��0'

2

1(
1�����+&

30�

'

40����

	��

1&��+��

/'�0

1��0'

2

1(

1(�&� 	��

1��������

5

6

L = series(Autopilot,Aerodyn,'Fin');

FeedbackChannels = {'Alpha','Mach','Az','q'};
K = ss(eye(4),'InputName',FeedbackChannels,...

'OutputName',FeedbackChannels);

4-17

4 Model Interconnections

T2 = feedback(L,K,'name',+1);

The closed-loop model T2 represents the positive feedback interconnection of L
and K. The 'name' option causes feedback to connect L and K by matching
their input and output names.

T2 is a 5-input, 7-output state-space model. The closed-loop response from
Azref to Az is T2('Az','Azref').

Compute the closed-loop response from Azref to Az using feedback, using
indices to specify the interconnections between Aerodyn and Autopilot.

L = series(Autopilot,Aerodyn,1,4);
K = ss(eye(4));

T3 = feedback(L,K,[1 2 3 4],[4 3 6 5],+1);

The vectors [1 2 3 4],[4 3 6 5] specifies which inputs and outputs,
respectively, of L complete the feedback interconnection. For example,
feedback uses output 4 and input 1 of L to create the first feedback
interconnection. The function uses output 3 and input 2 to create the second
interconnection, and so on.

T3 is a 5-input, 7-output state-space model. The closed-loop response from
Azref to Az is T3(6,5).

Compare the step response from Azref to Az to confirm that the three
approaches yield the same results.

step(T1,T2('Az','Azref'),T3(6,5),2)

4-18

MIMO Feedback Loop

4-19

4 Model Interconnections

How the Software Determines Properties of Connected
Models

When you interconnect models, the operation and the properties of the models
you are connecting determine the resulting model’s properties. The following
table summarizes some general rules governing how resulting model property
values are determined.

Property Expected Behavior

Ts When connecting discrete-time models, all
models must have identical or unspecified
(sys.Ts = -1) sampling time. The resulting
model inherits the sampling time from the
connected models.

InputName
OutputName
InputGroup
InputGroup

In general, the resulting model inherits I/O
names and I/O groups from connected models.
However, conflicting I/O names or I/O groups
are not inherited. For example, the InputName
property for sys1 + sys2 is left unspecified
if sys1 and sys2 have different InputName
property values.

TimeUnit All connected models must have identical
TimeUnit properties. The resulting model
inherits its TimeUnit from the connected models.

Variable A model resulting from operations on tf or
zpk models inherits its Variable property
value from the operands. Conflicts are resolved
according the following rules:

• For continuous-time models, 'p' has
precedence over 's'.

4-20

How the Software Determines Properties of Connected Models

Property Expected Behavior

• For discrete-time models, 'q^-1' and 'z^-1'
have precedence over 'q' and 'z', while 'q'
has precedence over 'z'.

Notes
UserData

Most operations ignore the Notes and UserData
properties. These properties of the resulting
model are empty.

4-21

4 Model Interconnections

Precedence Rules That Determine Model Type
This example explains the precedence rules that determine the type of model
that results when you interconnect models of different types.

When you combine Numeric LTI models other than frd models, the resulting
model is determined by the following order of precedence:

ss > zpk > tf > pid > pidstd

For example, connect an ss model with a pid model.

P = ss([-0.8,0.4;0.4,-1.0],[-3.0;1.4],[0.3,0],0);
C = pid(-0.13,-0.61);
CL = feedback(P1*C1,1)

The ss model has the highest precedence among Numeric LTI models.
Therefore, combining P and C with any model interconnection command
returns an ss model.

Combining Numeric LTI models with Generalized LTI models or with Control
Design Blocks results in Generalized LTI models.

For example, connect the ss model CL with a Control Design Block.

F = ltiblock.tf('F',0,1);
CLF = F*CL

CLF is a genss model.

Any connection that includes a frequency-response model (frd or genfrd)
results in a frequency-response model.

Note The software automatically converts all models to the resulting model
type before performing the connection operation.

4-22

Recommended Model Type for Building Block Diagrams

Recommended Model Type for Building Block Diagrams
This example shows how choice of model type can affect numerical accuracy
when interconnecting models.

You can represent block diagram components with any model type. However,
certain connection operations yield better numerical accuracy for models in
ss form.

For example, interconnect two models in series using different model types to
see how different representations introduce numerical inaccuracies.

Load the models Pd and Cd, which are ninth-order and second-order
discrete-time transfer functions, respectively.

load numdemo Pd Cd

Compute the open-loop transfer function L = Pd*Cd using the tf, zpk, ss, and
frd representations.

Ltf = Pd*Cd;
Lzp = zpk(Pd)*Cd;
Lss = ss(Pd)*Cd;

w = logspace(-1,3,100);
Lfrd = frd(Pd,w)*Cd;

Plot the magnitude of the frequency response to compare the four
representations.

bodemag(Ltf,Lzp,Lss,Lfrd)
legend('tf','zpk','ss','frd')

4-23

4 Model Interconnections

The tf representation has lost low-frequency dynamics that other
representations preserve.

4-24

5

Model Transformation

• “Conversion Between Model Types” on page 5-2

• “Discretize a Compensator” on page 5-6

• “Improve Accuracy of Discretized System with Time Delay” on page 5-11

• “Convert Discrete-Time System to Continuous Time” on page 5-16

• “Continuous-Discrete Conversion Methods” on page 5-19

• “Upsample a Discrete-Time System” on page 5-29

• “Choosing a Resampling Command” on page 5-33

• “Why Simplify Models?” on page 5-34

• “Cancellation Versus Approximation” on page 5-35

• “Approximate Model with Lower-Order Model” on page 5-37

• “Choose a Low-Order Approximation Method” on page 5-42

• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-47

• “Eliminate States by Pole-Zero Cancellation” on page 5-51

5 Model Transformation

Conversion Between Model Types

In this section...

“Explicit Conversion Between Model Types” on page 5-2

“Automatic Conversion Between Model Types” on page 5-2

“Recommended Working Representation” on page 5-3

“Convert PID Controller to Transfer Function” on page 5-4

“Get Current Value of Generalized Model by Model Conversion” on page 5-4

Explicit Conversion Between Model Types
You can explicitly convert a model from one representation to another using
the model-creation command for the target model type. For example, convert
to state-space representation usingss, and convert to parallel-form PID using
pid. For information about converting to a particular model type, see the
reference page for that model type.

In general, you can convert from any model type to any other. However, there
are a few limitations. For example, you cannot convert:

• frd models to analytic model types such as ss, tf, or zpk (unless you
perform system identification with System Identification Toolbox software).

• ss models with internal delays to tf or zpk.

You can convert between Numeric LTI models and Generalized LTI models.

• Converting a Generalized LTI model to a Numeric LTI model evaluates any
Control Design Blocks at their current (nominal) value.

• Converting a Numeric LTI model to a Generalized LTI model creates a
Generalized LTI model with an empty Blocks property.

Automatic Conversion Between Model Types
Some algorithms operate only on one type of model object. For example, the
algorithm for zero-order-hold discretization with c2d can only be performed
on state-space models. Similarly, commands such as tfdata or piddata

5-2

Conversion Between Model Types

expect a particular type of model (tf or pid, respectively). For convenience,
such commands automatically convert input models to the appropriate or
required model type. For example:

sys = ss(0,1,1,0)
[num,den] = tfdata(sys)

tfdata automatically converts the state-space model sys to transfer function
form to return numerator and denominator data.

Conversions to state-space form are not uniquely defined. For this reason,
automatic conversions to state space do not occur when the result depends
on the choice of state coordinates. For example, the initial and kalman
commands require state-space models.

Recommended Working Representation
You can represent numeric system components using any model type.
However, Numeric LTI model types are not equally well-suited for numerical
computations. In general, it is recommended that you work with state-space
(ss) or frequency response data (frd) models, for the following reasons:

• The accuracy of computations using high-order transfer functions (tf
or zpk models) is sometimes poor, particularly for MIMO or high-order
systems. Conversions to a transfer function representation can incur a
loss of accuracy.

• When you convert tf or zpk models to state space using ss, the software
automatically performs balancing and scaling operations. Balancing and
scaling improves the numeric accuracy of computations involving the
model. For more information about balancing and scaling state-space
models, see “Scaling State-Space Models” on page 16-2.

In addition, converting back and forth between model types can introduce
additional states or orders, or introduce numeric inaccuracies. For example,
conversions to state space are not uniquely defined, and are not guaranteed
to produce a minimal realization for MIMO models. For a given state-space
model sys,

ss(tf(sys))

5-3

5 Model Transformation

can return a model with different state-space matrices, or even a different
number of states in the MIMO case.

Convert PID Controller to Transfer Function
This example shows how to convert a PID controller model to a transfer
function model.

You can use the technique of this example to convert any type of model to
another type of model.

Create a PID controller.

pid_sys = pid(1,1.5,3);

Convert pid_sys to a transfer function model using tf.

C = tf(pid_sys);

C is a tf model representation of pid_sys.

You can similarly convert transfer function models to pid models, provided
the tf model object represents a parallel-form PID controller with Tf ≥ 0.

Get Current Value of Generalized Model by Model
Conversion
This example shows how to get the current value of a generalized model by
converting it to a numeric model.

Generalized models are used to model systems with tunable and/or uncertain
parameters.

Create a generalized model.

Represent the transfer function

F
a

s a

containing a real, tunable parameter, a, which is initialized to 10.

5-4

Conversion Between Model Types

a = realp('a',10);
F = tf(a,[1 a]);

F is a genss model parameterized by a.

Tune the generalized model.

Commands such as looptune and hinfstruct can be used to tune the
parameters of a generalized model.

For this example, change the value of the tunable component of F.

F.Blocks.a.Value = 5;

Get the current value of the generalized model.

Get the current value of the generalized model by converting it to a numeric
model.

F_cur_val = tf(F)

F_cur_val =

5

s + 5

Continuous-time transfer function.

tf(F) converts the generalized model, F, to a numeric transfer function,
F_cur_val.

To view the state-space representation of the current value of F, type ss(F).

Tip To examine the current value of all tunable components in a generalized
model, use showBlockValue.

5-5

5 Model Transformation

Discretize a Compensator
This example shows how to convert a compensator from continuous to discrete
time using several discretization methods, to identify a method that yields a
good match in the frequency domain.

You might design a compensator in continuous time, and then need to convert
it to discrete time for a digital implementation. When you do so, you want the
discretization to preserve frequency-domain characteristics that are essential
to your performance and stability requirements.

In the following control system, G is a continuous-time second-order system
with a sharp resonance around 3 rad/s.

�

�

�
�

� �� "
�������"

One valid controller for this system includes a notch filter in series with an
integrator. Create a model of this controller.

notch = tf([1,0.5,9],[1,5,9]);
integ = pid(0,0.34);
C = integ*notch;
bode(C)

5-6

Discretize a Compensator

The notch filter centered at 3 rad/s counteracts the effect of the resonance in
G. This configuration allows higher loop gain for a faster overall response.

Discretize the compensator.

Cdz = c2d(C,0.5);

The c2d command supports several different discretization methods. Since
this command does not specify a method, c2d uses the default method,
Zero-Order Hold (ZOH). In the ZOH method, the time-domain response of
the discretized compensator matches the continuous-time response at each
time step.

The discretized controller Cdz has a sampling time of 0.5 s. In practice, the
sampling time you choose might be constrained by the system in which you
implement your controller, or by the bandwidth of your control system.

5-7

5 Model Transformation

Compare the frequency-domain response of C and Cdz.

bode(C,Cdz)
legend('C','Cdz');

The vertical line marks the Nyquist frequency, π/Ts, where Ts is the sampling
time. Near the Nyquist frequency, the response of the discretized compensator
is distorted relative to the continuous-time response. As a result, the
discretized notched filter may not properly counteract the plant resonance.

To fix this, try discretizing the compensator using the Tustin method and
compare to the ZOH result. The Tustin discretization method often yields a
better match in the frequency domain than the ZOH method.

Cdt = c2d(C,0.5,'tustin');
plotopts = bodeoptions;

5-8

Discretize a Compensator

plotopts.Ylim = {[-60,40],[-225,0]};
bodeplot(C,Cdz,Cdt,plotopts)
legend('C','Cdz','Cdt')

The Tustin method preserves the depth of the notch. However, the method
introduces a frequency shift that is unacceptable for many applications. You
can remedy the frequency shift by specifying the notch frequency as the
prewarping frequency in the Tustin transform.

Discretize the compensator using the Tustin method with frequency
prewarping, and compare the results.

discopts = c2dOptions('Method','tustin','PrewarpFrequency',3.0);
Cdtp = c2d(C,0.5,discopts);
bodeplot(C,Cdt,Cdtp,plotopts)
legend('C','Cdt','Cdtp')

5-9

5 Model Transformation

To specify additional discretization options beyond the discretization method,
use c2dOptions. Here, the discretization options set discopts specifies both
the Tustin method and the prewarp frequency. The prewarp frequency is 3.0
rad/s, the frequency of the notch in the compensator response.

Using the Tustin method with frequency prewarping yields a better-matching
frequency response than Tustin without prewarping.

See Also c2d | c2dOptions

Related
Examples

• “Improve Accuracy of Discretized System with Time Delay” on page 5-11

Concepts • “Continuous-Discrete Conversion Methods” on page 5-19

5-10

Improve Accuracy of Discretized System with Time Delay

Improve Accuracy of Discretized System with Time Delay
This example shows how to improve the frequency-domain accuracy of a
system with a time delay that is a fractional multiple of the sampling time.

For systems with time delays that are not integer multiples of the sampling
time, the Tustin and Matched methods by default round the time delays to
the nearest multiple of the sampling period. To improve the accuracy of these
methods for such systems, c2d can optionally approximate the fractional
portion of the time delay by a discrete-time all-pass filter (a Thiran filter). In
this example, discretize the system both without and with an approximation
of the fractional portion of the delay and compare the results.

Create a continuous-time transfer function with a transfer delay of 2.5 s.

G = tf(1,[1,0.2,4],'ioDelay',2.5);

Discretize G using a sampling time of 1 s.

discopts = c2dOptions('Method','tustin','PrewarpFrequency',2);
Gt = c2d(G,1,discopts)

Warning: Rounding delays to the nearest multiple of the sampling period.
For more accuracy in the time domain, use the ZOH or FOH methods. For
more accuracy in the frequency domain, use Thiran filters to approximate
the fractional delays (type "help c2dOptions" for more details).
> In warning at 26

In zpkdata.c2d>handleFractionalDelays at 173
In zpkdata.c2d at 117
In tfdata.c2d at 14
In SystemArray>SystemArray.c2d_ at 355
In tf.tf>tf.c2d_ at 776
In DynamicSystem.c2d at 90

Gt =

0.1693 z^2 + 0.3386 z + 0.1693
z^(-3) * ------------------------------

z^2 + 0.7961 z + 0.913

5-11

5 Model Transformation

Sample time: 1 seconds
Discrete-time transfer function.

Specify the discretization method and prewarp frequency using c2dOptions.
G has a sharp resonance at 2 rad/s. At a sampling time of 1 s, that peak is
close to the Nyquist frequency. For a frequency-domain match that preserves
dynamics near the peak, use the Tustin method with prewarp frequency 2
rad/s.

The software warns you that it rounds the fractional time delay to the nearest
multiple of the sampling time. In this example, the time delay of 2.5 sampling
periods (2.5 s) converts to an additional factor of z^(-3) in Gt.

Compare Gt to the continuous-time system G.

plotopts = bodeoptions;
plotopts.Ylim = {[-100,20],[-1080,0]};
bodeplot(G,Gt,plotopts);
legend('G','Gt')

5-12

Improve Accuracy of Discretized System with Time Delay

There is a phase lag between the discretized system Gt and the
continuous-time system G, which grows as the frequency approaches the
Nyquist frequency. This phase lag is largely due to the rounding of the
fractional time delay. In this example, the fractional time delay is half a
sampling period.

Discretize G again using a third-order discrete-time all-pass filter (Thiran
filter) to approximate the half-period portion of the delay.

discopts.FractDelayApproxOrder = 3;
Gtf = c2d(G,1,discopts);

The FractDelayApproxOrder option specifies the order of the Thiran filter
that approximates the fractional portion of the delay. The other options
in discopts are unchanged. Thus Gtf is a Tustin discretization of G with
prewarp at 2 rad/s.

5-13

5 Model Transformation

Compare Gtf to G and Gt.

plotopts.PhaseMatching = 'on';
bodeplot(G,Gt,Gtf,plotopts);
legend('G','Gt','Gtf','Location','SouthWest')

The magnitudes of Gt and Gtf are identical. However, the phase of Gtf
provides a better match to the phase of the continuous-time system through
the resonance. As the frequency approaches the Nyquist frequency, this
phase match deteriorates. A higher-order approximation of the fractional
delay would improve the phase matching closer to the Nyquist frequencies.
However, each additional order of approximation adds an additional order
(or state) to the discretized system.

5-14

Improve Accuracy of Discretized System with Time Delay

If your application requires accurate frequency-matching near the Nyquist
frequency, use c2dOptions to make c2d approximate the fractional portion
of the time delay as a Thiran filter.

See Also c2d | c2dOptions | thiran

Related
Examples

• “Discretize a Compensator” on page 5-6

Concepts • “Continuous-Discrete Conversion Methods” on page 5-19

5-15

5 Model Transformation

Convert Discrete-Time System to Continuous Time
This example shows how to convert a discrete-time system to continuous
time using d2c, and compares the results using two different interpolation
methods.

Convert the second-order discrete-time system

G z
z

z z

0 5

2 5
.

to continuous time using the zero-order hold (ZOH) method.

G = zpk(-0.5,[-2,5],1,0.1);
Gcz = d2c(G)

Warning: The model order was increased to handle real negative poles.
> In warning at 26

In ssdata.utInvDiscretizeZOH at 74
In ssdata.d2c at 24
In zpkdata.d2c at 156
In SystemArray>SystemArray.d2c_ at 367
In zpk.zpk>zpk.d2c_ at 823
In DynamicSystem.d2c at 69

Gcz =

2.6663 (s^2 + 14.28s + 780.9)

(s-16.09) (s^2 - 13.86s + 1035)

Continuous-time zero/pole/gain model.

When you call d2c without specifying a method, the function uses ZOH
by default. The ZOH interpolation method increases the model order for
systems that have real negative poles. This order increase occurs because the
interpolation algorithm maps real negative poles in the z domain to pairs of
complex conjugate poles in the s domain.

Convert G to continuous time using the Tustin method.

5-16

Convert Discrete-Time System to Continuous Time

Gct = d2c(G,'tustin')

Gct =

0.083333 (s+60) (s-20)

(s-60) (s-13.33)

Continuous-time zero/pole/gain model.

In this case, there is no order increase.

Compare frequency responses of the interpolated systems with that of G.

bode(G,Gcz,Gct)
legend('G','Gcz','Gct')

5-17

5 Model Transformation

In this case, the Tustin method provides a better frequency-domain
match between the discrete system and the interpolation. However, the
Tustin interpolation method is undefined for systems with poles at z = –1
(integrators), and is ill-conditioned for systems with poles near z = –1.

See Also d2c | d2cOptions

Related
Examples

• “Discretize a Compensator” on page 5-6

Concepts • “Continuous-Discrete Conversion Methods” on page 5-19

5-18

Continuous-Discrete Conversion Methods

Continuous-Discrete Conversion Methods

In this section...

“Choosing a Conversion Method” on page 5-19

“Zero-Order Hold” on page 5-20

“First-Order Hold” on page 5-22

“Impulse-Invariant Mapping” on page 5-23

“Tustin Approximation” on page 5-24

“Zero-Pole Matching Equivalents” on page 5-27

Choosing a Conversion Method
The c2d command discretizes continuous-time models. Conversely, d2c
converts discrete-time models to continuous time. Both commands support
several discretization and interpolation methods, as shown in the following
table.

Discretization Method Use when:

“Zero-Order Hold” on page 5-20 You want an exact discretization in
the time domain for staircase inputs.

“First-Order Hold” on page 5-22 You want an exact discretization in
the time domain for piecewise linear
inputs.

“Impulse-Invariant Mapping” on
page 5-23 (c2d only)

You want an exact discretization in
the time domain for impulse train
inputs.

5-19

5 Model Transformation

Discretization Method Use when:

“Tustin Approximation” on page 5-24 • You want good matching in the
frequency domain between the
continuous- and discrete-time
models.

• Your model has important
dynamics at some particular
frequency.

“Zero-Pole Matching Equivalents”
on page 5-27

You have a SISO model, and you
want good matching in the frequency
domain between the continuous- and
discrete-time models.

Zero-Order Hold
The Zero-Order Hold (ZOH) method provides an exact match between the
continuous- and discrete-time systems in the time domain for staircase inputs.

The following block diagram illustrates the zero-order-hold discretization
Hd(z) of a continuous-time linear model H(s)

The ZOH block generates the continuous-time input signal u(t) by holding
each sample value u(k) constant over one sample period:

u t u k kT t k Ts s() = [] ≤ ≤ +(), 1

The signal u(t) is the input to the continuous system H(s). The output y[k]
results from sampling y(t) every Ts seconds.

5-20

Continuous-Discrete Conversion Methods

Conversely, given a discrete system Hd(z), d2c produces a continuous system
H(s). The ZOH discretization of H(s) coincides with Hd(z).

The ZOH discrete-to-continuous conversion has the following limitations:

• d2c cannot convert LTI models with poles at z = 0.

• For discrete-time LTI models having negative real poles, ZOH d2c
conversion produces a continuous system with higher order. The model
order increases because a negative real pole in the z domain maps to
a pure imaginary value in the s domain. Such mapping results in a
continuous-time model with complex data. To avoid this, the software
instead introduces a conjugate pair of complex poles in the s domain. See
“Convert Discrete-Time System to Continuous Time” on page 5-16 for an
example.

ZOH Method for Systems with Time Delays
You can use the ZOH method to discretize SISO or MIMO continuous-time
models with time delays. The ZOH method yields an exact discretization for
systems with input delays, output delays, or transfer delays.

For systems with internal delays (delays in feedback loops), the ZOH method
results in approximate discretizations. The following figure illustrates a
system with an internal delay.

����

� ��

For such systems, c2d performs the following actions to compute an
approximate ZOH discretization:

1 Decomposes the delay τ as τ ρ= +kTs with 0 ≤ <ρ Ts .

2 Absorbs the fractional delay ρ into H(s).

3 Discretizes H(s) to H(z).

5-21

5 Model Transformation

4 Represents the integer portion of the delay kTs as an internal discrete-time
delay z–k. The final discretized model appears in the following figure:

���� � �

��	�

	 !

�

First-Order Hold
The First-Order Hold (FOH) method provides an exact match between the
continuous- and discrete-time systems in the time domain for piecewise
linear inputs.

FOH differs from ZOH by the underlying hold mechanism. To turn the input
samples u[k] into a continuous input u(t), FOH uses linear interpolation
between samples:

u t u k
t kT

T
u k u k kT t k Ts

s
s s() = [] +

−
+[] − []() ≤ ≤ +()1 1,

This method is generally more accurate than ZOH for systems driven by
smooth inputs.

This FOHmethod differs from standard causal FOH and is more appropriately
called triangle approximation (see [2], p. 228). The method is also known as
ramp-invariant approximation.

FOH Method for Systems with Time Delays
You can use the FOH method to discretize SISO or MIMO continuous-time
models with time delays. The FOH method handles time delays in the same
way as the ZOH method. See “ZOH Method for Systems with Time Delays”
on page 5-21.

5-22

Continuous-Discrete Conversion Methods

Impulse-Invariant Mapping
The impulse-invariant mapping produces a discrete-time model with the
same impulse response as the continuous time system. For example,
compare the impulse response of a first-order continuous system with the
impulse-invariant discretization:

G = tf(1,[1,1]);
Gd1 = c2d(G,0.01,'impulse');
impulse(G,Gd1)

The impulse response plot shows that the impulse responses of the continuous
and discretized systems match.

5-23

5 Model Transformation

Impulse-Invariant Mapping for Systems with Time Delays
You can use impulse-invariant mapping to discretize SISO or MIMO
continuous-time models with time delay, except that the method does
not support ss models with internal delays. For supported models,
impulse-invariant mapping yields an exact discretization of the time delay.

Tustin Approximation
The Tustin or bilinear approximation yields the best frequency-domain match
between the continuous-time and discretized systems. This method relates
the s-domain and z-domain transfer functions using the approximation:

z e
sT
sT

sT s

s

s

1 2
1 2

/
/

.

In c2d conversions, the discretization Hd(z) of a continuous transfer function
H(s) is:

H z H s s
T

z
zd

s
() = ′() ′ = −

+
,

2 1
1

Similarly, the d2c conversion relies on the inverse correspondence

H s H z z
sT
sTd

s

s
() = ′() ′ =

+
−

,
/
/

1 2
1 2

When you convert a state-space model using the Tustin method, the states
are not preserved. The state transformation depends upon the state-space
matrices and whether the system has time delays. For example, for an explicit
(E = I) continuous-time model with no time delays, the state vector w[k] of the
discretized model is related to the continuous-time state vector x(t) by:

w kT I A
T

x kT
T

Bu kT x kT
T

Ax kT Bu ks
s

s
s

s s
s

s

2 2 2
TTs .

Ts is the sampling time of the discrete-time model. A and B are state-space
matrices of the continuous-time model.

5-24

Continuous-Discrete Conversion Methods

Tustin Approximation with Frequency Prewarping
If your system has important dynamics at a particular frequency that you
want the transformation to preserve, you can use the Tustin method with
frequency prewarping. This method ensures a match between the continuous-
and discrete-time responses at the prewarp frequency.

The Tustin approximation with frequency prewarping uses the following
transformation of variables:

H z H s s
T

z
zd

s
() = ′() ′ =

()
−
+

,
tan /

 2

1
1

This change of variable ensures the matching of the continuous- and
discrete-time frequency responses at the prewarp frequency ω, because of
the following correspondence:

H j H ed
j Ts () = ()

Tustin Approximation for Systems with Time Delays
You can use the Tustin approximation to discretize SISO or MIMO
continuous-time models with time delays.

By default, the Tustin method rounds any time delay to the nearest multiple
of the sampling time. Therefore, for any time delay tau, the integer portion
of the delay, k*Ts, maps to a delay of k sampling periods in the discretized
model. This approach ignores the residual fractional delay, tau - k*Ts.

You can to approximate the fractional portion of the delay by a discrete
all-pass filter (Thiran filter) of specified order. To do so, use the
FractDelayApproxOrder option of c2dOptions. See “Improve Accuracy of
Discretized System with Time Delay” on page 5-11 for an example.

To understand how the Tustin method handles systems with time delays,
consider the following SISO state-space model G(s). The model has input
delay τi, output delay τo, and internal delay τ.

5-25

5 Model Transformation

&����
%���

&����

&���

����

The following figure shows the general result of discretizing G(s) using the
Tustin method.

%+�(�

�+�(�

(���	��(�	��(�(���

(�� 	�(�

By default, c2d converts the time delays to pure integer time delays. The
c2d command computes the integer delays by rounding each time delay
to the nearest multiple of the sample time Ts. Thus, in the default case,
mi = round(τi /Ts), mo = round(τo/Ts), and m = round(τ/Ts).. Also in this case,
Fi(z) = Fo(z) = F(z) = 1.

If you set FractDelayApproxOrder to a non-zero value, c2d approximates the
fractional portion of the time delays by Thiran filters Fi(z), Fo(z), and F(z).

The Thiran filters add additional states to the model. The maximum number
of additional states for each delay is FractDelayApproxOrder.

5-26

Continuous-Discrete Conversion Methods

For example, for the input delay τi, the order of the Thiran filter Fi(z) is:

order(Fi(z)) = max(ceil(τi /Ts), FractDelayApproxOrder).

If ceil(τi /Ts) < FractDelayApproxOrder, the Thiran filter Fi(z) approximates
the entire input delay τi. If ceil(τi/Ts) > FractDelayApproxOrder, the Thiran
filter only approximates a portion of the input delay. In that case, c2d
represents the remainder of the input delay as a chain of unit delays z–m

i
,

where

mi = ceil(τi /Ts) – FractDelayApproxOrder.

c2d uses Thiran filters and FractDelayApproxOrder in a similar way to
approximate the output delay τo and the internal delay τ.

When you discretizetf and zpk models using the Tustin method, c2d first
aggregates all input, output, and transfer delays into a single transfer delay
τTOT for each channel. c2d then approximates τTOT as a Thiran filter and a
chain of unit delays in the same way as described for each of the time delays
in ss models.

For more information about Thiran filters, see the thiran reference page
and [4].

Zero-Pole Matching Equivalents
The method of conversion by computing zero-pole matching equivalents
applies only to SISO systems. The continuous and discretized systems have
matching DC gains. Their poles and zeros are related by the transformation:

z ei
s Ti s=

where:

• zi is the ith pole or zero of the discrete-time system.

• si is the ith pole or zero of the continuous-time system.

• Ts is the sampling time.

5-27

5 Model Transformation

See [2] for more information.

Zero-Pole Matching for Systems with Time Delays
You can use zero-pole matching to discretize SISO continuous-time models
with time delay, except that the method does not support ss models with
internal delays. The zero-pole matching method handles time delays in the
same way as the Tustin approximation. See “Tustin Approximation for
Systems with Time Delays” on page 5-25.

References
[1] Åström, K.J. and B. Wittenmark, Computer-Controlled Systems: Theory
and Design, Prentice-Hall, 1990, pp. 48-52.

[2] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997.

[3] Smith, J.O. III, “Impulse Invariant Method”,
Physical Audio Signal Processing, August 2007.
http://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html.

[4] T. Laakso, V. Valimaki, “Splitting the Unit Delay”, IEEE Signal
Processing Magazine, Vol. 13, No. 1, p.30-60, 1996.

See Also c2d | d2c | c2dOptions | d2cOptions | d2d | thiran

Related
Examples

• “Discretize a Compensator” on page 5-6
• “Improve Accuracy of Discretized System with Time Delay” on page 5-11
• “Convert Discrete-Time System to Continuous Time” on page 5-16

5-28

http://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html

Upsample a Discrete-Time System

Upsample a Discrete-Time System
This example shows how to upsample a system using both the d2d and
upsample commands and compares the results of both to the original system.

Upsampling a system can be useful, for example, when you need to implement
a digital controller at a faster rate than you originally designed it for.

Create the discrete-time system G z
z
z

0 4
0 7
.
.
with a sampling time of 0.3 s.

G = tf([1,0.4],[1,-0.7],0.3);

Resample the system at 0.1 s using d2d.

G_d2d = d2d(h1,0.1)

G_d2d =

z - 0.4769

z - 0.8879

Sample time: 0.1 seconds
Discrete-time transfer function.

By default, d2d uses the zero-order-hold (ZOH) method to resample the
system. The resampled system has the same order as G.

Resample the system again at 0.1 s, using upsample.

G_up = upsample(h1,3)

G_up =

z^3 + 0.4

z^3 - 0.7

5-29

5 Model Transformation

The second input, 3, tells upsample to resample G at a sampling time three
times faster than the sampling time of G. This input to upsample must be an
integer.

G_up has three times as many poles and zeroes as G.

Compare the step responses of the original model G with the resampled
models G_d2d and G_up.

step(G,'-r',G_d2d,':g',G_up,'--b')
legend('G','d2d','upsample','Location','SouthEast')

The step response of the upsampled model G_up matches exactly the step
response of the original model G. The response of the resampled model G_d2d
matches only at every third sample.

5-30

Upsample a Discrete-Time System

Compare the frequency response of the original model with the resampled
models.

bode(G,'-r',G_d2d,':g',G_up,'--b')
legend('G','d2d','upsample','Location','SouthWest')

In the frequency domain as well, the model G_up created with the upsample
command matches the original model exactly up to the Nyquist frequency
of the original model.

Using upsample provides a better match than d2d in both the time and
frequency domains. However, upsample increases the model order, which can
be undesirable. Additionally, upsample is only available where the original
sampling time is an integer multiple of the new sampling time.

5-31

5 Model Transformation

See Also d2d | d2dOptions | upsample

Concepts • “Choosing a Resampling Command” on page 5-33

5-32

Choosing a Resampling Command

Choosing a Resampling Command
You can resample a discrete-time model using the commands described in the
following table.

To... Use the command...

• Downsample a system.

• Upsample a system without any
restriction on the new sampling
time.

d2d

Upsample a system with the highest
accuracy when:
• The new sample time is
integer-value-times faster than
the sample time of the original
model.

• Your new model can have more
states than the original model.

upsample

See Also d2d | d2dOptions | upsample

Related
Examples

• “Upsample a Discrete-Time System” on page 5-29

5-33

5 Model Transformation

Why Simplify Models?
Working with simpler models result in faster and more reliable computations
than higher-order models. Simpler models are also easier to understand
and manipulate. Therefore, it can be useful to reduce model order while
preserving model characteristics that are important to your application.

Some cases where you might want to reduce model order include:

• You are working with a relatively high-order model obtained from
linearizing a Simulink model, performing a finite-element calculation,
identification with System Identification Toolbox software, or other source.

• You design a high-order controller that you wish to implement as a
lower-order controller (such as a PID controller). For example, controller
design using Linear-Quadratic-Gaussian methods or H∞ synthesis
techniques can yield a high-order result. In this case, you might reduce the
plant order before synthesis, reduce the controller order after synthesis,
or both.

• You want to improve the simulation speed of a Simulink model at a certain
operating point. In that case, you can linearize a portion of the model
at that operating point and compute a reduced-order simplification or
approximation of the linearized model. You can then replace the portion of
the model with an LTI Block containing the reduced-order model.

In general, when you reduce model order, you want to preserve model
characteristics that are important for your application. For example, for
control design, you should verify that the behavior of the reduced order model
adequately matches the behavior of the original model where the open-loop
gain is close to 1 (in the gain crossover region).

Related
Examples

• “Approximate Model with Lower-Order Model” on page 5-37
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-47
• “Eliminate States by Pole-Zero Cancellation” on page 5-51

Concepts • “Cancellation Versus Approximation” on page 5-35

5-34

Cancellation Versus Approximation

Cancellation Versus Approximation
To reduce the order of a model, you can either simplify your model, or compute
a lower-order approximation. The following table summarizes the differences
among several model-reduction approaches.

Approach Commands

Simplification — Reduce model
order exactly by canceling pole-zero
pairs or eliminating states that
have no effect on the overall model
response

• sminreal— Eliminate states that
are structurally disconnected from
the inputs or outputs. Eliminating
structurally disconnected states
is a good first step in model
reduction because the process
does not involve any numerical
computation.

• minreal — Eliminate canceling
or near-canceling pole-zero pairs
from transfer functions. Eliminate
unobservable or uncontrollable
states from state-space models.

Approximation — compute a
lower-order approximation

balred — Compute a lower-order
approximation of your model
by neglecting states that have
relatively low effect on the overall
model response

In some cases, approximation can yield better results, even if the model
looks like a good candidate for simplification. For example, models with
near pole-zero cancellations may be better reduced by approximation than
simplification. Similarly, using balred to reduce state-space models can yield
more accurate results than minreal.

When you use a reduced-order model, always verify that the simplification or
approximation preserves model characteristics that are important for your
application. For example, compare the frequency responses of the original and
reduced models using bode or sigma. Or, compare the open-loop responses for
the original and reduced plant and controller models.

5-35

5 Model Transformation

See Also sminreal | minreal | balred

Related
Examples

• “Approximate Model with Lower-Order Model” on page 5-37
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-47
• “Eliminate States by Pole-Zero Cancellation” on page 5-51

5-36

Approximate Model with Lower-Order Model

Approximate Model with Lower-Order Model
This example shows how to compute a reduced-order approximation of a
model using balred.

To compute a reduced-order approximation, you first choose an order for
the reduced model by examining the contribution of the various states to
the overall model behavior.

Load the high-order model.

load ltiexamples hplant
order(hplant)

ans =

23

hplant is a 23rd-order SISO model. When choosing an order for the reduced
system, it is helpful to know how many states make a significant contribution
to the overall model behavior.

Examine the relative amount of energy per state using a Hankel singular
value (HSV) plot.

hsvplot(hplant)

5-37

5 Model Transformation

Small Hankel singular values indicate that the associated states contribute
little to the behavior of the system. The plot shows that two states account
for most of the energy in the system. Therefore, try simplifying the model
to just first or second order.

Compute first-order and second-order reduced approximations of hplant.

opts = balredOptions('StateElimMethod','Truncate');
hplant1 = balred(hplant,1,opts);
hplant2 = balred(hplant,2,opts);

The second argument to balred specifies the target approximation order.

By default, balred discards the states with the smallest Hankel singular
values, and alters the remaining states to preserve the DC gain of the system.

5-38

Approximate Model with Lower-Order Model

Setting the StateElimMethod option to Truncate causes balred to discard
low-energy states without altering the remaining states.

Compare the frequency responses of the original and approximated systems.

When working with reduced-order models, it is important to verify that
the approximation does not introduce inaccuracies at frequencies that are
important for your application.

bodeplot(hplant,hplant2,hplant1)
legend('Original','2nd order','1st order')

When working with MIMO systems, you can use sigma to examine a singular
value plot rather than a Bode plot.

In this case, the second-order system matches the original 23rd-order system
very well, especially at lower frequencies. The first-order system does not
match as well.

5-39

5 Model Transformation

In general, as you decrease the order of the approximated model, the frequency
response of the approximated model begins to differ from the original model.
Choose an approximation that is sufficiently accurate in the bands that are
important to you. For example, in a control system, you might want good
accuracy inside the control bandwidth. Accuracy at frequencies far above the
control bandwidth, where the gain rapidly rolls off, might be less important.

Examine the time-domain responses of the original and reduced-order
systems.

stepplot(hplant,hplant2,hplant1)
legend('Original','2nd order','1st order','Location','SouthEast')

This result confirms that the second-order approximation is a good match to
the original 23rd-order system.

5-40

Approximate Model with Lower-Order Model

See Also hsvplot | balred

Related
Examples

• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-47
• “Choose a Low-Order Approximation Method” on page 5-42
• “Eliminate States by Pole-Zero Cancellation” on page 5-51

Concepts • “Cancellation Versus Approximation” on page 5-35

5-41

5 Model Transformation

Choose a Low-Order Approximation Method
This example compares two ways of computing a low-order approximation
with balred: approximation with DC matching and approximation by state
truncation.

By default, balred discards the states with that make the smallest
contribution to system behavior, altering the remaining states to preserve the
DC gain of the system. Setting the StateElimMethod option to Truncate
causes balred to discard low-energy states without altering the remaining
states. Which method you choose depends upon what dynamics are important
to your application. In general, preserving DC gain comes at the expense of
accuracy in higher-frequency dynamics. Conversely, state truncation can yield
more accuracy in fast transients, at the expense of low-frequency accuracy.

In this example, compare the two methods of computing a reduced-order
approximation of the following closed-loop system from r to y.

�

� �

�� ������
����������

�
�����

Create the closed-loop model from r to y.

G = zpk([0 -2],[-1 -3],1);
C = tf(2,[1 1e-2]);
T = feedback(G*C,1)

T =

2 s (s+2)

(s+0.004277) (s+1.588) (s+4.418)

Continuous-time zero/pole/gain model.

5-42

Choose a Low-Order Approximation Method

T is a third-order system that has a near pole-zero cancellation close to s = 0.
Therefore, it is a good candidate for order reduction by approximation.

Compute two second-order approximations to T — one that preserves the
DC gain and one that truncates the lowest-energy state without changing
the other states.

matchopt = balredOptions('StateElimMethod','MatchDC');
truncopt = balredOptions('StateElimMethod','Truncate');
Tmatch = balred(T,2,matchopt);
Ttrunc = balred(T,2,truncopt);

Use balredOptions to specify the approximation method.

Compare the frequency responses of the approximated models.

bodeplot(T,Tmatch,Ttrunc)
legend('Original','DC Match','Truncate')

5-43

5 Model Transformation

The truncated model Ttrunc matches the original model well at high
frequencies, but differs considerably at low frequency. Conversely, Tmatch
yields a good match at low frequencies as expected, at the expense of high
frequency accuracy.

You can also see the differences between the two methods by examining the
time-domain response in different regimes. Compare the slow dynamics by
looking at the step response of all three models with a long time horizon.

stepplot(T,Tmatch,'r--',Ttrunc,1000)
legend('Original','DC Match','Truncate')

5-44

Choose a Low-Order Approximation Method

As expected, on long time scales the DC matched approximation Tmatch is
a good match to the original model.

Compare the fast transients in the step response.

stepplot(T,Tmatch,'r',Ttrunc,'g--',1)
legend('Original','DC Match','Truncate')

5-45

5 Model Transformation

On short time scales, the truncated approximation Ttrunc provides a better
match to the original model. Which approximation method you should use
depends on which regime is most important for your application.

See Also balred

Related
Examples

• “Approximate Model with Lower-Order Model” on page 5-37
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-47
• “Eliminate States by Pole-Zero Cancellation” on page 5-51

Concepts • “Cancellation Versus Approximation” on page 5-35

5-46

Approximate Model with Unstable or Near-Unstable Pole

Approximate Model with Unstable or Near-Unstable Pole
This example shows how to compute a reduced-order approximation of a
system using balred when the system has unstable or near-unstable poles.

balred does not eliminate unstable poles when computing a reduced-order
approximation, because doing so would fundamentally change the system
dynamics. Instead, balred first decomposes the model into stable and
unstable parts. Then, balred reduces the stable part of the model.

Load a model with unstable poles.

load reduce.mat gasf35unst

gasf35unst is a 25-state SISO model with two unstable poles (s > 0).

Examine the system poles to find near-unstable poles.

pzplot(gasf35unst)
axis([-0.001 0.001 -0.0004 0.0004])

5-47

5 Model Transformation

The pole-zero plot shows several poles (marked by x) that are stable, but
relatively close to the imaginary axis. In your application, you might want to
ensure that balred does not discard these near-unstable poles.

To do so, calculate a reduced-order system that preserves the two stable poles
within 0.0005 s–1 of the imaginary axis.

opts = balredOptions('Offset',0.0005);
gasf_arr = balred(gasf35unst,[10 15],opts);

The Offset option of balredOptions sets the boundary between poles that
balred can discard, and poles that balred must preserve (treat as unstable).
Setting Offset to 0.0005 preserves the two stable poles of gasf35unst that
are closest to the imaginary axis.

5-48

Approximate Model with Unstable or Near-Unstable Pole

Providing balred an array of target approximation orders [10 15] causes
balred to return an array of approximated models. The array gasf_arr
is contains two models — a 10th-order and a 15th-order approximation
of gasf35unst. In both approximations, balred does not discard the two
unstable poles or the two nearly-unstable poles.

Compare the reduced-order approximations to the original model.

bodeplot(gasf35unst,gasf_arr,'r--')

The 15th order approximation is a good frequency-domain match to the
original model. However, the 10th-order approximation shows changes
in high-frequency dynamics, which might too large to be acceptable. The
15th-order approximation is probably a better choice.

5-49

5 Model Transformation

See Also balred

Related
Examples

• “Approximate Model with Lower-Order Model” on page 5-37
• “Eliminate States by Pole-Zero Cancellation” on page 5-51

Concepts • “Cancellation Versus Approximation” on page 5-35

5-50

Eliminate States by Pole-Zero Cancellation

Eliminate States by Pole-Zero Cancellation
This example shows how to use to reduce the order of a transfer function
with cancelling or near-cancelling factors in the numerator and denominator
using minreal.

Canceling or near-canceling pole-zero pairs can arise from system dynamics,
or from building models using model interconnection functions.

Create a model of the following system, where C is a PI controller and G has
a zero at 3×10–8 rad/s. Such a low-frequency zero can arise from derivative
action somewhere in the plant dynamics. For example, the plant may include
a component that computes speed from position measurements.

�
�

�������� �
�

4���

G = zpk(3e-8,[-1,-3],1);
C = pid(1,0.3);
T = feedback(G*C,1)

T =

(s+0.3) (s+3e-08)

s (s+4.218) (s+0.7824)

Continuous-time zero/pole/gain model.

In the closed-loop model T, the integrator (1/s) from C very nearly cancels
the low-frequency zero of G.

Force a cancellation of the integrator with the zero near the origin.

5-51

5 Model Transformation

Tred = minreal(T,1e-7)

Tred =

(s+0.3)

(s+4.218) (s+0.7824)

Continuous-time zero/pole/gain model.

By default, minreal reduces transfer function order by canceling exact
pole-zero pairs or near pole-zero pairs within sqrt(eps). Specifying 1e-7 as
the second input causes minreal to eliminate pole-zero pairs within 10–7

rad/s of each other.

The reduced model Tred includes all the dynamics of the original closed-loop
model T, except for the near-canceling zero-pole pair.

Compare the frequency responses of the original and reduced systems.

bode(T,Tred,'r--')
legend('T','Tred')

5-52

Eliminate States by Pole-Zero Cancellation

Because the canceled pole and zero do exactly match, some extreme
low-frequency dynamics evident in the original model are missing from Tred.
In many applications, you can neglect such extreme low-frequency dynamics.
When you increase the matching tolerance of minreal, make sure that you do
not eliminate dynamic features that are relevant to your application.

See Also minreal

Related
Examples

• “Approximate Model with Lower-Order Model” on page 5-37
• “Approximate Model with Unstable or Near-Unstable Pole” on page 5-47
• “Choose a Low-Order Approximation Method” on page 5-42

Concepts • “Cancellation Versus Approximation” on page 5-35

5-53

5 Model Transformation

5-54

Linear Analysis

• Chapter 6, “Time Domain Analysis”

• Chapter 7, “Frequency Domain Analysis”

• Chapter 8, “Sensitivity Analysis”

6

Time Domain Analysis

• “Choosing a Time-Domain Analysis Command” on page 6-2

• “Time-Domain Response Data and Plots” on page 6-3

• “System Characteristics on Response Plots” on page 6-6

• “Numeric Values of Time-Domain System Characteristics” on page 6-10

• “Time-Domain Responses of Discrete-Time Model” on page 6-12

• “Time-Domain Responses of MIMO Model” on page 6-15

• “Time-Domain Responses of Multiple Models” on page 6-17

• “Joint Time- and Frequency-Domain Analysis” on page 6-20

• “Response from Initial Conditions” on page 6-26

• “Analysis of Systems with Time Delays” on page 6-29

6 Time Domain Analysis

Choosing a Time-Domain Analysis Command
When you perform time-domain analysis of a dynamic system model, you may
want one or more of the following:

• A plot of the system response as a function of time.

• Numerical values of the system response in a data array.

• Numerical values of characteristics of the system response such as peak
response or settling time.

Control System Toolbox time-domain analysis commands can obtain these
results for any kind of dynamic system model (for example, continuous or
discrete, SISO or MIMO, or arrays of models) except for frequency response
data models.

To obtain numerical data, use:

• step, impulse, initial, lsim— System response data at a vector of time
points.

• stepinfo,lsiminfo— Numerical values of system response characteristics
such as settling time and overshoot.

To obtain response plots, use:

• stepplot, impulseplot, initialplot,lsimplot— Plot system response
data, visualize response characteristics on plots, compare responses of
multiple systems on a single plot.

• ltiview— Linear analysis tool for plotting many types of system responses
simultaneously, including both time-domain and frequency-domain
responses

6-2

Time-Domain Response Data and Plots

Time-Domain Response Data and Plots
This example shows how to obtain step and impulse response data, as well as
step and impulse response plots, from a dynamic system model.

Create a transfer function model and plot its response to a step input at t = 0.

H = tf([8 18 32],[1 6 14 24]);
stepplot(H);

stepplot plots the step response on the screen. Unless you specify a time
range to plot, stepplot automatically chooses a time range that illustrates
the system dynamics.

6-3

6 Time Domain Analysis

Calculate the step response data from t = 0 (application of the step input)
to t = 8 s.

[y,t] = step(H,8);

When you call step with output arguments, the command returns the step
response data y. The vector t contains corresponding time values.

Plot the response of H to an impulse input applied at t = 0. Plot the response
with a grid.

opts = timeoptions;
opts.Grid = 'on';
impulseplot(H,opts)

6-4

Time-Domain Response Data and Plots

Use the timeoptions command to define options sets for time-domain plotting
commands like impulseplot and stepplot.

Calculate 200 points of impulse response data from t = 1 (one second after
application of the impulse input) to t = 3s.

[y,t] = impulse(H,linspace(1,3,200));

As for step, you can omit the time vector to allow impulse to automatically
select a time range.

See Also step | impulse | stepplot | impulseplot | timeoptions

Related
Examples

• “System Characteristics on Response Plots” on page 6-6
• “Time-Domain Responses of Discrete-Time Model” on page 6-12
• “Time-Domain Responses of MIMO Model” on page 6-15
• “Time-Domain Responses of Multiple Models” on page 6-17

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-5

6 Time Domain Analysis

System Characteristics on Response Plots
This example shows how to display system characteristics such as settling
time and overshoot on step response plots.

You can use similar procedures to display system characteristics on impulse
response plots or initial value response plots, such as peak response or
settling time.

Create a transfer function model and plot its response to a step input at t = 0.

H = tf([8 18 32],[1 6 14 24]);
stepplot(H)

Display the peak response on the plot.

6-6

System Characteristics on Response Plots

Right-click anywhere in the figure and select Characteristics > Peak
Response from the menu.

A marker appears on the plot indicating the peak response. Horizontal and
vertical dotted lines indicate the time and amplitude of that response.

6-7

6 Time Domain Analysis

Click the marker to view the value of the peak response and the overshoot
in a datatip.

6-8

System Characteristics on Response Plots

You can use a similar procedure to select other characteristics such as settling
time and rise time from the Characteristics menu and view the values.

See Also step | impulse | stepinfo | lsiminfo

Related
Examples

• “Numeric Values of Time-Domain System Characteristics” on page 6-10

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-9

6 Time Domain Analysis

Numeric Values of Time-Domain System Characteristics
This example shows how to obtain numeric values of step response
characteristics such as rise time, settling time, and overshoot using stepinfo.

You can use similar techniques with lsiminfo to obtain characteristics of the
system response to an arbitrary input or initial conditions.

Create a dynamic system model and get numeric values of the system’s step
response characteristics.

H = tf([8 18 32],[1 6 14 24]);
data = stepinfo(H)

data =

RiseTime: 0.2087
SettlingTime: 3.4972
SettlingMin: 1.1956
SettlingMax: 1.6872

Overshoot: 26.5401
Undershoot: 0

Peak: 1.6872
PeakTime: 0.6033

The output is a structure that contains values for several step response
characteristics. To access these values or refer to them in other calculations,
use dot notation. For example, data.Overshoot is the overshoot value.

Calculate the time it takes the step response of H to settle within 0.5% of its
final value.

data = stepinfo(H,'SettlingTimeThreshold',0.005);
t05 = data.SettlingTime

t05 =

4.8897

6-10

Numeric Values of Time-Domain System Characteristics

By default, stepinfo defines the settling time as the time it takes for the
output to settle within 0.02 (2%) of its final value. Specifying a more stringent
'SettlingTimeThreshold' of 0.005 results in a longer settling time.

For more information about the options and the characteristics, see the
stepinfo reference page.

See Also stepinfo | lsiminfo

Related
Examples

• “System Characteristics on Response Plots” on page 6-6

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-11

6 Time Domain Analysis

Time-Domain Responses of Discrete-Time Model
This example shows how to obtain a step response and step response data for
a discrete-time dynamic system model.

You can use the techniques of this example with commands such as impulse,
initial, impulseplot, and initialpot to obtain time-domain responses
of discrete-time models. Obtaining time-domain responses of discrete-time
models is the same as for continuous-time models, except that the time sample
points are limited by the sampling time Ts of the model.

Create a discrete-time transfer function model and plot its response to a step
input at t = 0.

H = tf([-0.06,0.4],[1,-1.6,0.78],0.1);
stepplot(H)

6-12

Time-Domain Responses of Discrete-Time Model

For discrete-time models, stepplot plots the response at multiples of the
sampling period, assuming a hold between samples.

Compute the step response of H between 0.5 and 2.5 seconds.

[y,t] = step(H,0.5:0.1:2.5);

When you specify a time vector for the response of a discrete-time model, the
time step must match the sampling time Ts of the discrete-time model. The
vector t contains the time points between 0.5 and 2.5 seconds, at multiples
of the sampling time of H, 0.1 s. The vector y contains the corresponding
step response values.

See Also step | impulse | stepplot | initial | impulseplot | initialplot

6-13

6 Time Domain Analysis

Related
Examples

• “System Characteristics on Response Plots” on page 6-6
• “Time-Domain Responses of Discrete-Time Model” on page 6-12
• “Time-Domain Responses of MIMO Model” on page 6-15
• “Time-Domain Responses of Multiple Models” on page 6-17

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-14

Time-Domain Responses of MIMO Model

Time-Domain Responses of MIMO Model
This example shows how to obtain impulse response data and plots for a
multi-input, multi-output (MIMO) model using impulse.

You can use the same techniques to obtain other types of time-domain
responses of MIMO models.

Create a MIMO model and plot its response to a t = 0 impulse at all inputs.

H = rss(2,2,2);
H.InputName = 'Control';
H.OutputName = 'Temperature';
impulseplot(H)

6-15

6 Time Domain Analysis

impulseplot plots the response of each output to an impulse applied at each
input. (Because rss generates a random state-space model, you might see
different responses from those pictured.) The first column of plots shows the
response of each output to an impulse applied at the first input, Control(1).
The second column shows the response of each output to an impulse applied
at the second input, Control(2).

Calculate the impulse responses of all channels of H, and examine the size of
the output.

[y,t] = impulse(H);
size(y)

ans =

334 2 2

The first dimension of the data array y is the number of samples in the time
vector t. The impulse command determines this number automatically if you
do not supply a time vector. The remaining dimensions of y are the numbers
of outputs and inputs in H. Thus, y(:,i,j) is the response at the ith output
of H to an impulse applied at the jth input.

See Also step | initial | stepplot | initialplot | impulse | impulseplot

Related
Examples

• “Time-Domain Response Data and Plots” on page 6-3
• “System Characteristics on Response Plots” on page 6-6
• “Time-Domain Responses of Discrete-Time Model” on page 6-12
• “Time-Domain Responses of Multiple Models” on page 6-17

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-16

Time-Domain Responses of Multiple Models

Time-Domain Responses of Multiple Models
This example shows how to compare the step responses of multiple models
on a single plot using step. This example compares the step response of an
uncontrolled plant to the closed-loop step response of the plant with two
different PI controllers.

You can use similar techniques with other response commands, such as
impulse or initial, to obtain plots of responses of multiple models.

Obtain two models whose time responses you want to compare, and plot them
on a single step plot.

For example, you can compare a third-order plant G, and the closed-loop
response of G with a controller C1 having integral action.

G = zpk([],[-5 -5 -10],100);

C1 = pid(0,4.4);
CL1 = feedback(G*C1,1);

step(G,CL1);

6-17

6 Time Domain Analysis

When you provide multiple models to step as input arguments, the command
displays the responses of both models on the same plot. If you do not specify a
time range to plot, step attempts to choose a time range that illustrates the
dynamics of all the models.

Compare the step response of the closed-loop model with another controller.
Specify plot colors and styles for each response.

C2 = pid(2.9,7.1);
CL2 = feedback(G*C2,1);

step(G,'b--',CL1,'g-',CL2,'r-')

6-18

Time-Domain Responses of Multiple Models

You can use formatting strings to specify plot color and style for each response
in the plot. For example, 'g-' specifies a solid green line for response CL2.
For additional plot customization options, use stepplot.

See Also step | initial | stepplot | initialplot | impulse | impulseplot |
ltiview

Related
Examples

• “Joint Time- and Frequency-Domain Analysis” on page 6-20

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-19

6 Time Domain Analysis

Joint Time- and Frequency-Domain Analysis
This example shows how to compare multiple types of responses side by side,
including both time-domain and frequency-domain responses, using the
interactive LTI Viewer tool.

Obtain models whose responses you want to compare.

For example, compare a third-order plant G, and the closed-loop responses of G
with two different controllers, C1 and C2.

G = zpk([],[-5 -5 -10],100);
C1 = pid(0,4.4);
T1 = feedback(G*C1,1);
C2 = pid(2.9,7.1);
T2 = feedback(G*C2,1);

Open the LTI Viewer tool to examine the responses of the plant and the
closed-loop systems.

ltiview(G,T1,T2)

6-20

Joint Time- and Frequency-Domain Analysis

By default, the LTI Viewer launches with a plot of the step response of the

three systems. Click to add a legend to the plot.

Add plots of the impulse responses to the LTI Viewer display.

In the LTI Viewer, select Edit > Plot Configurations to open the Plot
Configurations dialog box.

6-21

6 Time Domain Analysis

Select the two-plot configuration. In the Response Type area, select Bode
Magnitude for the second plot type.

Click OK to add the Bode plots to the LTI Viewer display.

Display the peak values of the Bode responses on the plot.

6-22

Joint Time- and Frequency-Domain Analysis

Right-click anywhere in the Bode Magnitude plot and select
Characteristics > Peak Response from the menu.

Markers appear on the plot indicating the peak response values. Horizontal
and vertical dotted lines indicate the frequency and amplitude of those
responses.

Click on a marker to view the value of the peak response in a datatip.

6-23

6 Time Domain Analysis

You can use a similar procedure to select other characteristics such as settling
time and rise time from the Characteristics menu and view the values.

You can also change the type of plot displayed in the LTI Viewer. For
example, change the first plot type to a plot of the impulse response.

To select a different plot type for a plot displayed in the LTI Viewer, right-click
anywhere in the plot. Select Plot Types > Impulse

6-24

Joint Time- and Frequency-Domain Analysis

The displayed plot changes to show the impulse of the three systems.

See Also step | initial | stepplot | initialplot | impulse | impulseplot |
ltiview

Related
Examples

• “Time-Domain Responses of Multiple Models” on page 6-17

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-25

6 Time Domain Analysis

Response from Initial Conditions
This example shows how to compute and plot the response of a state-space
(ss) model to specified initial state values using initialplot and initial.

Load a state-space model.

load ltiexamples sys_dc
sys_dc.InputName = 'Volts';
sys_dc.OutputName = 'w';
sys_dc.StateName = {'Current','w'};
sys_dc

sys_dc =

a =
Current w

Current -4 -0.03
w 0.75 -10

b =
Volts

Current 2
w 0

c =
Current w

w 0 1

d =
Volts

w 0

Continuous-time state-space model.

This example uses the SISO, 2-state model sys_dc. This model represents
a DC motor. The input is an applied voltage, and the output is the angular
rate of the motor ω. The states of the model are the induced current i (x1),
and ω (x2).

6-26

Response from Initial Conditions

Plot the undriven evolution of the motor’s angular rate from an initial state in
which the induced current is 1.0 amp and the initial rotation rate is 5.0 rad/s.

x0 = [1.0 5.0];
initialplot(sys_dc,x0)

initialplot plots the time evolution from the specified initial condition on
the screen. Unless you specify a time range to plot, impulse automatically
chooses a time range that illustrates the system dynamics.

Calculate the time evolution of the output and the states of sys_dc from t = 0
(application of the step input) to t = 1 s.

t = 0:0.01:1;
[y,t,x] = initial(sys_dc,x0,t);

6-27

6 Time Domain Analysis

The vector y contains the output at each time step in t. The array x contains
the state values at each time step. Therefore, in this example x is a 2-by-101
array. Each row of x contains the values of the two states of sys_dc at the
corresponding time step.

See Also step | impulse | initial | initialplot

Related
Examples

• “Time-Domain Response Data and Plots” on page 6-3
• “Numeric Values of Time-Domain System Characteristics” on page 6-10

Concepts • “Choosing a Time-Domain Analysis Command” on page 6-2

6-28

Analysis of Systems with Time Delays

Analysis of Systems with Time Delays
You can use the usual analysis commands (step, bode, margin, ...) to
analyze systems with time delays. The software makes no approximations
when performing such analysis.

For example, consider the following control loop, where the plant is modeled
as first-order plus dead time:

You can model the closed-loop system from r to y with the following
commands:

s = tf('s');
P = ss(5*exp(-3.4*s)/(s+1));
C = 0.1 * (1 + 1/(5*s));
T = feedback(P*C,1)

T is a state-space model with an internal delay. For more information about
models with internal delays, see “Closing Feedback Loops with Time Delays”
on page 2-26.

Plot the step response of T:

step(T)
grid, title('Closed-loop step response')

6-29

6 Time Domain Analysis

For more complicated interconnections, you can name the input and output
signals of each block and use connect to automatically take care of the wiring.
Suppose, for example, that you want to add feedforward to the control loop
of the previous model.

6-30

Analysis of Systems with Time Delays

You can derive the corresponding closed-loop model Tff by

F = 0.3/(s+4);
P.InputName = 'u'; P.OutputName = 'y';
C.InputName = 'e'; C.OutputName = 'uc';
F.InputName = 'r'; F.OutputName = 'uf';
Sum1 = sumblk('e','r','y','+-'); % e = r-y
Sum2 = sumblk('u','uf','uc','++'); % u = uf+uc
Tff = connect(P,C,F,Sum1,Sum2,'r','y');

and compare its response with the feedback only design.

step(T,'b',Tff,'r')
legend('No feedforward','Feedforward')
grid
title('Closed-loop step response with and without feedforward')

6-31

6 Time Domain Analysis

The state-space representation keeps track of the internal delays in both
models.

Considerations to Keep in Mind when Analyzing
Systems with Internal Time Delays
The time and frequency responses of delay systems can look odd and
suspicious to those only familiar with delay-free LTI analysis. Time responses
can behave chaotically, Bode plots can exhibit gain oscillations, etc. These are
not software or numerical quirks but real features of such systems. Below are
a few illustrations of these phenomena.

Gain ripple:

6-32

Analysis of Systems with Time Delays

s=tf('s');
G = exp(-5*s)/(s+1);
T = feedback(ss(G),.5);
bodemag(T)

Gain oscillations:

G = ss(1) + 0.5 * exp(-3*s);
bodemag(G)

6-33

6 Time Domain Analysis

Jagged step response:

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
T = feedback(ss(G),1);
step(T)

6-34

Analysis of Systems with Time Delays

Note the rearrivals (echoes) of the initial step function.

Chaotic response:

G = ss(1/(s+1)) + exp(-4*s);
T = feedback(1,G);

step(T)

6-35

6 Time Domain Analysis

You can use Control System Toolbox tools to model and analyze these and
other strange-appearing artifacts of internal delays.

6-36

7

Frequency Domain Analysis

• “Choosing a Frequency-Domain Analysis Command” on page 7-2

• “Frequency Response of a SISO System” on page 7-3

• “Frequency Response of a MIMO System” on page 7-5

• “System Characteristics on Response Plots” on page 7-9

• “Numeric Values of Frequency-Domain Characteristics of SISO Model”
on page 7-12

• “Pole and Zero Locations” on page 7-15

• “Assessing Gain and Phase Margins” on page 7-18

• “Analyzing Control Systems with Delays” on page 7-32

• “Analyzing the Response of an RLC Circuit” on page 7-48

7 Frequency Domain Analysis

Choosing a Frequency-Domain Analysis Command
When you perform time-domain analysis of a dynamic system model, you may
want one or more of the following:

• A plot of the system response as a function of frequency, or plots of pole
and zero locations.

• Numerical values of the system response in a data array.

• Numerical values of characteristics of the system response such as stability
margins, peak gains, or singular values.

Control System Toolbox frequency-domain analysis commands can obtain
these results for any kind of dynamic system model (for example, continuous
or discrete, SISO or MIMO, or arrays of models).

To obtain numerical data, use:

• bode, bodemag, freqresp, nichols, nyquist— System response data at a
vector of frequency points.

• margin, getPeakGain, getGainCrossover, sigma — Numerical values of
system response characteristics such as gain margins, phase margins,
and singular values.

To obtain response plots, use:

• bodeplot, nicholsplot, nyquistplot, sigmaplot— Plot system response
data, visualize response characteristics on plots, compare responses of
multiple systems on a single plot.

• ltiview— Linear analysis tool for plotting many types of system responses
simultaneously, including both time-domain and frequency-domain
responses

To obtain pole-zero maps, use:

• pzplot, iopzplot— Plot pole and zero locations in the complex plane.

7-2

Frequency Response of a SISO System

Frequency Response of a SISO System
This example shows how to plot the frequency response and obtain frequency
response data for a single-input, single-output (SISO) dynamic system model.

Create a transfer function model and plot its frequency response.

H = tf([10,21],[1,1.4,26]);
bodeplot(H)

bodeplot plots the frequency response on the screen. Unless you specify
a time range to plot, stepplot automatically chooses a time range that
illustrates the system dynamics.

Calculate the frequency response between 1 and 13 rad/s.

7-3

7 Frequency Domain Analysis

[mag,phase,w] = bode(H,{1,13});

When you call bode with output arguments, the command returns vectors mag
and phase containing the magnitude and phase of the frequency response.
The cell array input {1,13} tells bode to calculate the response at a grid of
frequencies between 1 and 13 rad/s. bode returns the frequency points in
the vector w.

See Also bode | bodeplot | bodeoptions

Related
Examples

Concepts • “Choosing a Frequency-Domain Analysis Command” on page 7-2

7-4

Frequency Response of a MIMO System

Frequency Response of a MIMO System
This example shows how to examine the frequency response of a multi-input,
multi-output (MIMO) system in two ways: by computing the frequency
response, and by computing the singular values.

Calculate the frequency response of a MIMO model and examine the size of
the output.

H = rss(2,2,2);
H.InputName = 'Control';
H.OutputName = 'Temperature';
[mag,phase,w] = bode(H);
size(mag)

ans =

2 2 53

The first and second dimension of the data array mag are the number of
outputs and inputs of H. The third dimension is the number of points
in the frequency vector w. (The bode command determines this number
automatically if you do not supply a frequency vector.) Thus, mag(i,j,:) is
the frequency response from the jth input of H to the ith output, in absolute
units. The phase data array phase takes the same form as mag.

Plot the frequency response of each input/output pair in H.

bodeplot(H)

7-5

7 Frequency Domain Analysis

bodeplot plots the magnitude and the phase of the frequency response of each
input/output pair in H. (Because rss generates a random state-space model,
you might see different responses from those pictured.) The first column of
plots shows the response from the first input, Control(1), to each output.

7-6

Frequency Response of a MIMO System

The second column shows the response from the second input, Control(2), to
each output.

Plot the singular values of H as a function of frequency.

sigmaplot(H)

sigmaplot plots the singular values of the MIMO system H as a function
of frequency. The maximum singular value at a particular frequency is
the maximum gain of the system over all linear combinations of inputs
at that frequency. Singular values can provide a better indication of the
overall response, stability, and conditioning of a MIMO system than a
channel-by-channel Bode plot.

Calculate the singular values of H between 0.1 and 10 rad/s.

7-7

7 Frequency Domain Analysis

[sv,w] = sigma(H,{0.1,10});

When you call sigma with output arguments, the command returns the
singular values in the data array sv. The cell array input {0.1,10} tells
sigma to calculate the singular values at a grid of frequencies between 0.1 and
10 rad/s. sigma returns these frequencies in the vector w. Each row of sv
contains the singular values of H at the frequencies of w.

7-8

System Characteristics on Response Plots

System Characteristics on Response Plots
This example shows how to display system characteristics such as peak
response on Bode response plots.

You can use similar procedures to display system characteristics on other
types of response plots.

Create a transfer function model and plot its frequency response.

H = tf([10,21],[1,1.4,26]);
bodeplot(H)

Display the peak response on the plot.

7-9

7 Frequency Domain Analysis

Right-click anywhere in the figure and select Characteristics > Peak
Response from the menu.

A marker appears on the plot indicating the peak response. Horizontal and
vertical dotted lines indicate the frequency and magnitude of that response.
The other menu options add other system characteristics to the plot.

7-10

System Characteristics on Response Plots

Click the marker to view the magnitude and frequency of the peak response
in a datatip.

7-11

7 Frequency Domain Analysis

Numeric Values of Frequency-Domain Characteristics of
SISO Model

This example shows how to obtain numeric values of several frequency-domain
characteristics of a SISO dynamic system model, including the peak gain, dc
gain, system bandwidth, and the frequencies at which the system gain crosses
a specified frequency.

Create a transfer function model and plot its frequency response.

H = tf([10,21],[1,1.4,26]);
bodeplot(H)

Plotting the frequency response gives a rough idea of the frequency-domain
characteristics of the system. H includes a pronounced resonant peak, and

7-12

Numeric Values of Frequency-Domain Characteristics of SISO Model

rolls off at 20 dB/decade at high frequency. It is often desirable to obtain
specific numeric values for such characteristics.

Calculate the peak gain and the frequency of the resonance.

[gpeak,fpeak] = getPeakGain(H);
gpeak_dB = mag2db(gpeak)

gpeak_dB =

17.7579

getPeakGain returns both the peak location fpeak and the peak gain gpeak
in absolute units. Using mag2db to convert gpeak to decibels shows that the
gain peaks at almost 18 dB.

Find the band within which the system gain exceeds 0 dB, or 1 in absolute
units.

wc = getGainCrossover(H,1)

wc =

1.2582
12.1843

getGainCrossover returns a vector of frequencies at which the system
response crosses the specified gain. The resulting wc vector shows that the
system gain exceeds 0 dB between about 1.3 and 12.2 rad/s.

Find the dc gain of H.

The Bode response plot shows that the gain of H tends toward a finite value
as the frequency approaches zero. The dcgain command finds this value
in absolute units.

k = dcgain(H);

Find the frequency at which the response of H rolls off to –10 dB relative to
its dc value.

7-13

7 Frequency Domain Analysis

fb = bandwidth(H,-10);

bandwidth returns the first frequency at which the system response drops
below the dc gain by the specified value in dB.

7-14

Pole and Zero Locations

Pole and Zero Locations
This example shows how to examine the pole and zero locations of dynamic
systems both graphically using pzplot and numerically using pole and zero.

Examining the pole and zero locations can be useful for tasks such as stability
analysis or identifying near-canceling pole-zero pairs for model simplification.
This example compares two closed-loop systems that have the same plant and
different controllers.

Create dynamic system models representing the two closed-loop systems.

G = zpk([],[-5 -5 -10],100);
C1 = pid(2.9,7.1);
CL1 = feedback(G*C1,1);
C2 = pid(29,7.1);
CL2 = feedback(G*C2,1);

The controller C2 has a much higher proportional gain. Otherwise, the two
closed-loop systems CL1 and CL2 are the same.

Graphically examine the pole and zero locations of CL1 and CL2.

pzplot(CL1,CL2)
grid

7-15

7 Frequency Domain Analysis

pzplot plots pole and zero locations on the complex plane as x and o marks,
respectively. When you provide multiple models, pzplot plots the poles and
zeros of each model in a different color. Here, there poles and zeros of CL1
are blue, and those of CL2 are green.

The plot shows that all poles of CL1 are in the left half-plane, and therefore
CL1 is stable. From the radial grid markings on the plot, you can read that the
damping of the oscillating (complex) poles is approximately 0.45. The plot also
shows that CL2 contains poles in the right half-plane and is therefore unstable.

Compute numerical values of the pole and zero locations of CL2.

z = zero(CL2);

7-16

Pole and Zero Locations

p = pole(CL2);

zero and pole return column vectors containing the zero and pole locations of
the system.

7-17

7 Frequency Domain Analysis

Assessing Gain and Phase Margins
This example shows how to examine the effect of stability margins on
closed-loop response characteristics of a control system.

Stability of a Feedback Loop

Stability generally means that all internal signals remain bounded. This is a
standard requirement for control systems to avoid loss of control and damage
to equipment. For linear feedback systems, stability can be assessed by
looking at the poles of the closed-loop transfer function. Consider for example
the SISO feedback loop:

Figure 1: SISO Feedback Loop.

For a unit loop gain k, you can compute the closed-loop transfer function
T using:

G = tf([.5 1.3],[1 1.2 1.6 0]);
T = feedback(G,1);

To obtain the poles of T, type

pole(T)

ans =

7-18

Assessing Gain and Phase Margins

-0.2305 + 1.3062i
-0.2305 - 1.3062i
-0.7389 + 0.0000i

The feedback loop for k=1 is stable since all poles have negative real parts.

How Stable is Stable?

Checking the closed-loop poles gives us a binary assessment of stability. In
practice, it is more useful to know how robust (or fragile) stability is. One
indication of robustness is how much the loop gain can change before stability
is lost. You can use the root locus plot to estimate the range of k values for
which the loop is stable:

rlocus(G)

7-19

7 Frequency Domain Analysis

Clicking on the point where the locus intersects the y axis reveals that this
feedback loop is stable for

This range shows that with k=1, the loop gain can increase 270% before you
lose stability.

Gain and Phase Margins

Changes in the loop gain are only one aspect of robust stability. In general,
imperfect plant modeling means that both gain and phase are not known
exactly. Because modeling errors are most damaging near the gain crossover
frequency (frequency where open-loop gain is 0dB), it also matters how much
phase variation can be tolerated at this frequency.

The phase margin measures how much phase variation is needed at the gain
crossover frequency to lose stability. Similarly, the gain margin measures
what relative gain variation is needed at the gain crossover frequency to
lose stability. Together, these two numbers give an estimate of the "safety
margin" for closed-loop stability. The smaller the stability margins, the more
fragile stability is.

You can display the gain and phase margins on a Bode plot as follows. First
create the plot:

bode(G), grid

7-20

Assessing Gain and Phase Margins

Then, right-click on the plot and select the Characteristics -> Minimum
Stability Margins submenu. Finally, click on the blue dot markers. The
resulting plot is shown below:

7-21

7 Frequency Domain Analysis

This indicates a gain margin of about 9 dB and a phase margin of about 45
degrees. The corresponding closed-loop step response exhibits about 20%
overshoot and some oscillations.

step(T), title('Closed-loop response for k=1')

7-22

Assessing Gain and Phase Margins

If we increase the gain to k=2, the stability margins are reduced to

[Gm,Pm] = margin(2*G);
GmdB = 20*log10(Gm) % gain margin in dB
Pm % phase margin in degrees

GmdB =

2.7471

Pm =

8.6328

7-23

7 Frequency Domain Analysis

and the closed-loop response has poorly damped oscillations, a sign of near
instability.

step(feedback(2*G,1)), title('Closed-loop response for k=2')

Systems with Multiple Gain or Phase Crossings

Some systems have multiple gain crossover or phase crossover frequencies,
which leads to multiple gain or phase margin values. For example, consider
the feedback loop

7-24

Assessing Gain and Phase Margins

Figure 2: Feedback Loop with Multiple Phase Crossovers

The closed-loop response for k=1 is stable:

G = tf(20,[1 7]) * tf([1 3.2 7.2],[1 -1.2 0.8]) * tf([1 -8 400],[1 33 700])
T = feedback(G,1);
step(T), title('Closed-loop response for k=1')

7-25

7 Frequency Domain Analysis

To assess how robustly stable this loop is, plot its Bode response:

bode(G), grid

7-26

Assessing Gain and Phase Margins

Then, right-click on the plot and select the Characteristics -> All Stability
Margins submenu to show all the crossover frequencies and associated
stability margins. The resulting plot is shown below.

7-27

7 Frequency Domain Analysis

Note that there are two 180 deg phase crossings with corresponding gain
margins of -9.35dB and +10.6dB. Negative gain margins indicate that
stability is lost by decreasing the gain, while positive gain margins indicate
that stability is lost by increasing the gain. This is confirmed by plotting the
closed-loop step response for a plus/minus 6dB gain variation about k=1:

k1 = 2; T1 = feedback(G*k1,1);
k2 = 1/2; T2 = feedback(G*k2,1);
step(T,'b',T1,'r',T2,'g',12),
legend('k = 1','k = 2','k = 0.5')

7-28

Assessing Gain and Phase Margins

The plot shows increased oscillations for both smaller and larger gain values.

You can use the command allmargin to compute all stability margins. Note
that gain margins are expressed as gain ratios, not dB. Use mag2db to convert
the values to dB.

m = allmargin(G)

GainMargins_dB = mag2db(m.GainMargin)

m =

GainMargin: [0.3408 3.3920]
GMFrequency: [1.9421 16.4807]
PhaseMargin: 68.1178

7-29

7 Frequency Domain Analysis

PMFrequency: 7.0762
DelayMargin: 0.1680
DMFrequency: 7.0762

Stable: 1

GainMargins_dB =

-9.3510 10.6091

Interactive GUI

To gain additional insight into the connection between stability margins and
closed-loop responses, click on the link below to launch an interactive GUI
for tuning the loop gain k and seeing the effect on margins and closed-loop
responses.

Open the Gain and Phase Margin GUI

margin_gui

7-30

Assessing Gain and Phase Margins

7-31

7 Frequency Domain Analysis

Analyzing Control Systems with Delays
This example shows how to use Control System Toolbox™ to analyze and
design control systems with delays.

Control of Processes with Delays

Many processes involve dead times, also referred to as transport delays or time
lags. Controlling such processes is challenging because delays cause linear
phase shifts that limit the control bandwidth and affect closed-loop stability.

Using the state-space representation, you can create accurate open- or
closed-loop models of control systems with delays and analyze their stability
and performance without approximation. The state-space (SS) object
automatically keeps track of "internal" delays when combining models, see
the "Specifying Time Delays" tutorial for more details.

Example: PI Control Loop with Dead Time

Consider the standard setpoint tracking loop:

where the process model P has a 2.6 second dead time and the compensator C
is a PI controller:

You can specify these two transfer functions as

s = tf('s');
P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);
C = 0.06 * (1 + 1/s);

7-32

Analyzing Control Systems with Delays

To analyze the closed-loop response, construct a model T of the closed-loop
transfer from ysp to y. Because there is a delay in this feedback loop, you
must convert P and C to state space and use the state-space representation
for analysis:

T = feedback(P*C,1)

T =

a =
x1 x2 x3

x1 -0.36 -1.24 -0.18
x2 1 0 0
x3 0 1 0

b =
u1

x1 0.5
x2 0
x3 0

c =
x1 x2 x3

y1 0.12 0.48 0.36

d =
u1

y1 0

(values computed with all internal delays set to zero)

Internal delays (seconds): 2.6

Continuous-time state-space model.

The result is a third-order model with an internal delay of 2.6 seconds.
Internally, the state-space object T tracks how the delay is coupled with the

7-33

7 Frequency Domain Analysis

remaining dynamics. This structural information is not visible to users, and
the display above only gives the A,B,C,D values when the delay is set to zero.

Use the STEP command to plot the closed-loop step response from ysp to y:

step(T)

The closed-loop oscillations are due to a weak gain margin as seen from the
open-loop response P*C:

margin(P*C)

7-34

Analyzing Control Systems with Delays

There is also a resonance in the closed-loop frequency response:

bode(T)
grid, title('Closed-loop frequency response')

7-35

7 Frequency Domain Analysis

To improve the design, you can try to notch out the resonance near 1 rad/s:

notch = tf([1 0.2 1],[1 .8 1]);
C = 0.05 * (1 + 1/s);
Tnotch = feedback(P*C*notch,1);

step(Tnotch), grid

7-36

Analyzing Control Systems with Delays

Pade Approximation of Time Delays

Many control design algorithms cannot handle time delays directly. A common
workaround consists of replacing delays by their Pade approximations
(all-pass filters). Because this approximation is only valid at low frequencies,
it is important to compare the true and approximate responses to choose the
right approximation order and check the approximation validity.

Use the PADE command to compute Pade approximations of LTI models
with delays. For the PI control example above, you can compare the exact
closed-loop response T with the response obtained for a first-order Pade
approximation of the delay:

T1 = pade(T,1);
step(T,'b',T1,'r',100)
grid, legend('Exact','First-Order Pade')

7-37

7 Frequency Domain Analysis

The approximation error is fairly large. To get a better approximation, try
a second-order Pade approximation of the delay:

T2 = pade(T,2);
step(T,'b',T2,'r',100)
grid, legend('Exact','Second-Order Pade')

7-38

Analyzing Control Systems with Delays

The responses now match closely except for the non-minimum phase artifact
introduced by the Pade approximation.

Sensitivity Analysis

Delays are rarely known accurately, so it is often important to understand
how sensitive a control system is to the delay value. Such sensitivity analysis
is easily performed using LTI arrays and the InternalDelay property.

For example, to analyze the sensitivity of the notched PI control above, create
5 models with delay values ranging from 2.0 to 3.0:

tau = linspace(2,3,5); % 5 delay values
Tsens = repsys(Tnotch,[1 1 5]); % 5 copies of Tnotch
for j=1:5

Tsens(:,:,j).InternalDelay = tau(j); % jth delay value -> jth model
end

7-39

7 Frequency Domain Analysis

Then use STEP to create an envelope plot:

step(Tsens)
grid, title('Closed-loop response for 5 delay values between 2.0 and 3.0')

This plot shows that uncertainty on the delay value has little effect on
closed-loop characteristics. Note that while you can change the values of
internal delays, you cannot change how many there are because this is part
of the model structure. To eliminate some internal delays, set their value
to zero or use PADE with order zero:

Tnotch0 = Tnotch;
Tnotch0.InternalDelay = 0;
bode(Tnotch,'b',Tnotch0,'r',{1e-2,3})
grid, legend('Delay = 2.6','No delay','Location','SouthWest')

7-40

Analyzing Control Systems with Delays

Discretization

You can use C2D to discretize continuous-time delay systems. Available
methods include zero-order hold (ZOH), first-order hold (FOH), and Tustin.
For models with internal delays, the ZOH discretization is not always "exact,"
i.e., the continuous and discretized step responses may not match:

Td = c2d(T,1);
step(T,'b',Td,'r')
grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays. Use
faster sampling rate if discretization error is large.

7-41

7 Frequency Domain Analysis

To correct such discretization gaps, reduce the sampling period until the
continuous and discrete responses match closely:

Td = c2d(T,0.05);
step(T,'b',Td,'r')
grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays. Use
faster sampling rate if discretization error is large.

7-42

Analyzing Control Systems with Delays

Note that internal delays remain internal in the discretized model and do
not inflate the model order:

order(Td)
Td.InternalDelay

ans =

3

ans =

52

7-43

7 Frequency Domain Analysis

Some Unique Features of Delay Systems

The time and frequency responses of delay systems can look bizarre and
suspicious to those only familiar with delay-free LTI analysis. Time responses
can behave chaotically, Bode plots can exhibit gain oscillations, etc. These
are not software quirks but real features of such systems. Below are a few
illustrations of these phenomena

Gain ripples:

G = exp(-5*s)/(s+1);
T = feedback(G,.5);
bodemag(T)

Gain oscillations:

7-44

Analyzing Control Systems with Delays

G = 1 + 0.5 * exp(-3*s);
bodemag(G)

Jagged step response (note the "echoes" of the initial step):

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
T = feedback(G,1);
step(T)

7-45

7 Frequency Domain Analysis

Chaotic response:

G = 1/(s+1) + exp(-4*s);
T = feedback(1,G);

step(T)

7-46

Analyzing Control Systems with Delays

7-47

7 Frequency Domain Analysis

Analyzing the Response of an RLC Circuit
This example shows how to analyze the time and frequency responses of
common RLC circuits as a function of their physical parameters using Control
System Toolbox™ functions.

Bandpass RLC Network

The following figure shows the parallel form of a bandpass RLC circuit:

Figure 1: Bandpass RLC Network.

The transfer function from input to output voltage is:

7-48

Analyzing the Response of an RLC Circuit

The product LC controls the bandpass frequency while RC controls how narrow
the passing band is. To build a bandpass filter tuned to the frequency 1 rad/s,
set L=C=1 and use R to tune the filter band.

Analyzing the Frequency Response of the Circuit

The Bode plot is a convenient tool for investigating the bandpass
characteristics of the RLC network. Use tf to specify the circuit’s transfer
function for the values

%|R=L=C=1|:
R = 1; L = 1; C = 1;
G = tf([1/(R*C) 0],[1 1/(R*C) 1/(L*C)])

G =

s

s^2 + s + 1

Continuous-time transfer function.

Next, use bode to plot the frequency response of the circuit:

bode(G), grid

7-49

7 Frequency Domain Analysis

As expected, the RLC filter has maximum gain at the frequency 1 rad/s.
However, the attenuation is only -10dB half a decade away from this
frequency. To get a narrower passing band, try increasing values of R as
follows:

R1 = 5; G1 = tf([1/(R1*C) 0],[1 1/(R1*C) 1/(L*C)]);
R2 = 20; G2 = tf([1/(R2*C) 0],[1 1/(R2*C) 1/(L*C)]);
bode(G,'b',G1,'r',G2,'g'), grid
legend('R = 1','R = 5','R = 20')

7-50

Analyzing the Response of an RLC Circuit

The resistor value R=20 gives a filter narrowly tuned around the target
frequency of 1 rad/s.

Analyzing the Time Response of the Circuit

We can confirm the attenuation properties of the circuit G2 (R=20) by
simulating how this filter transforms sine waves with frequency 0.9, 1, and
1.1 rad/s:

t = 0:0.05:250;
subplot(311), lsim(G2,sin(t),t), title('w = 1')
subplot(312), lsim(G2,sin(0.9*t),t), title('w = 0.9')
subplot(313), lsim(G2,sin(1.1*t),t), title('w = 1.1')

7-51

7 Frequency Domain Analysis

The waves at 0.9 and 1.1 rad/s are considerably attenuated. The wave
at 1 rad/s comes out unchanged once the transients have died off. The
long transient results from the poorly damped poles of the filters, which
unfortunately are required for a narrow passing band:

damp(pole(G2))

Eigenvalue Damping Frequency

-2.50e-02 + 1.00e+00i 2.50e-02 1.00e+00
-2.50e-02 - 1.00e+00i 2.50e-02 1.00e+00

(Frequencies expressed in rad/TimeUnit)

7-52

Analyzing the Response of an RLC Circuit

Interactive GUI

To analyze other standard circuit configurations such as low-pass and
high-pass RLC networks, click on the link below to launch an interactive GUI.
In this GUI, you can change the R,L,C parameters and see the effect on the
time and frequency responses in real time.

Open the RLC Circuit GUI

rlc_gui

7-53

7 Frequency Domain Analysis

7-54

8

Sensitivity Analysis

• “Plant Model with Single-Parameter Variation” on page 8-2

• “Plant Model with Multiple-Parameter Variation” on page 8-4

• “Study Parameter Variation by Sampling Tunable Model” on page 8-6

• “Sensitivity of Control System to Time Delays” on page 8-8

8 Sensitivity Analysis

Plant Model with Single-Parameter Variation
This example shows how to create a one-dimensional array of transfer
functions using stack. One parameter of the transfer function varies from
model to model in the array.

You can use such an array to investigate the effect of parameter variation on
your model, such as for sensitivity analysis.

Create an array of transfer functions representing a low-pass filter

F s
a

s a

, at three values of the roll-off frequency a:

1 Create transfer function models representing the filter with roll-off
frequency at a = 3, 5, and 7.

F1 = tf(3,[1 3]);
F2 = tf(5,[1 5]);
F3 = tf(7,[1 7]);

2 Use stack to build an array.

Farray = stack(1,F1,F2,F3);

The first argument to stack specifies the array dimension along which
stack builds an array. The remaining arguments specify the models to
arrange along that dimension.

Farray is a 3-by-1 array of transfer functions.

Note Concatenating models with MATLAB array concatenation
commands, instead of with stack, creates multi-input, multi-output
(MIMO) models rather than model arrays. For example:

G = [F1;F2;F3]

creates a one-input, three-output transfer function model, not a 3-by-1
array.

8-2

Plant Model with Single-Parameter Variation

3 Plot the frequency response of the array to examine the effect of parameter
variation on the filter behavior.

bodeplot(Farray)

When you use analysis commands such as bodeplot on a model array, the
resulting plot shows the response of each model in the array. Therefore, you
can see the range of responses that results from the parameter variation.

8-3

8 Sensitivity Analysis

Plant Model with Multiple-Parameter Variation
This example shows how to create a two-dimensional (2-D) array of transfer
functions using for loops. One parameter of the transfer function varies in
each dimension of the array.

You can use the technique of this example to create higher-dimensional arrays
with variations of more parameters. Such arrays are useful for studying the
effects of multiple-parameter variations on system response.

The second-order single-input, single-output (SISO) transfer function

H s
s s

() =
+ +

2

2 22
.

depends on two parameters—the damping ratio ζ and natural frequency ω.

If both ζ and ω vary, you obtain multiple transfer functions of the form:

H s
s s

ij
j

i j j

2

2 22
,

where ζi and ωj represent different measurements or sampled values of the
variable parameters.

You can collect all of these transfer functions in a single variable to create a
two-dimensional model array.

1 (Optional) Preallocate memory for the model array.

You can enhance computation efficiency by preallocating memory. To do
this, create an array of the required size and initialize its entries to zero.

H = tf(zeros(1,1,3,3));

In this example, there are three values for each parameter in the transfer
function H. Therefore, this command creates a 3-by-3 array of single-input,
single-output (SISO) zero transfer functions.

8-4

Plant Model with Multiple-Parameter Variation

2 Create arrays containing the parameter values.

zeta = [0.66,0.71,0.75];
w = [1.0,1.2,1.5];

3 Build the array by looping through all combinations of parameter values.

for i = 1:length(zeta)
for j = 1:length(w)

H(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);
end

end

H is a 3-by-3 array of transfer functions. ζ varies as you move from model
to model along a single column of H. The parameter ω varies as you move
along a single row. Plotting the step response of H shows how the parameter
variation affects the step response.

step(H)

8-5

8 Sensitivity Analysis

Study Parameter Variation by Sampling Tunable Model
This example shows how to sample a parametric model of a second-order filter
across a grid of parameter values using replaceBlock.

1 Create a tunable (parametric) model of the second-order filter:

F s
s s

n

n n

2

2 22
,

where the damping ζ and the natural frequency ωn are the parameters.

wn = realp('wn',3);
zeta = realp('zeta',0.8);
F = tf(wn^2,[1 2*zeta*wn wn^2]);

F is a genss model with two tunable Control Design Blocks, the realp
blocks wn and zeta. The blocks wn and zeta have initial values of 3 and
0.8, respectively.

2 Sample F over a 2-by-3 grid of (wn,zeta) values.

Fsample = replaceBlock(F,'wn',[3;5],'zeta',[0.6 0.8 1.0]);

Fsample is 2-by-3 array of state-space models.

3 (Optional) Plot the step response of Fsample.

step(Fsample)

8-6

Study Parameter Variation by Sampling Tunable Model

The step response plot show the variation in the natural frequency and
damping constant across the six models in the array Fsample.

8-7

8 Sensitivity Analysis

Sensitivity of Control System to Time Delays
Delays are rarely known accurately, so it is often important to understand
how sensitive a control system is to the delay value. Such sensitivity analysis
is easily performed using LTI arrays and the InternalDelay property. For
example, consider this notched PI control system developed in “PI Control
Loop with Dead Time” from the example Analyzing Control Systems with
Delays.

% Create a 3rd-order plant with a PI controller and notch filter.
s = tf('s');
P = exp(-2.6*s)*(s+3)/(s^2+0.3*s+1);
C = 0.06 * (1 + 1/s);
T = feedback(ss(P*C),1)
notch = tf([1 0.2 1],[1 .8 1]);
C = 0.05 * (1 + 1/s);
Tnotch = feedback(ss(P*C*notch),1);

Create five models with delay values ranging from 2.0 to 3.0:

tau = linspace(2,3,5); % 5 delay values
Tsens = repsys(Tnotch,[1 1 5]); % 5 copies of Tnotch

% for j=1:5
Tsens(:,:,j).InternalDelay = tau(j); % jth delay value

% -> jth model end
% Use step to create an envelope plot.
step(Tsens)
grid
title('Closed-loop response for 5 delay values between 2.0 and 3.0')

8-8

Sensitivity of Control System to Time Delays

This plot shows that uncertainty on the delay value has little effect on
closed-loop characteristics. Note that while you can change the values of
internal delays, you cannot change how many there are because this is part of
the model structure. To eliminate some internal delays, set their value to 0
or use pade with order zero:

Tnotch0 = Tnotch;
Tnotch0.InternalDelay = 0;
bode(Tnotch,'b',Tnotch0,'r',{1e-2,3})
grid, legend('Delay = 2.6','No delay','Location','SouthWest')

8-9

8 Sensitivity Analysis

8-10

Control Design

• Chapter 9, “PID Controller Design”

• Chapter 10, “Single-Input, Single-Output Control Design”

9

PID Controller Design

• “PID Controller Design at the Command Line” on page 9-2

• “Designing Cascade Control System with PI Controllers” on page 9-8

9 PID Controller Design

PID Controller Design at the Command Line
This example shows how to design a PID controller for the plant

sys
s

1

1 3
.

As a first pass, design a simple PI controller:

sys = zpk([],[-1 -1 -1],1); % define the plant
[C_pi,info] = pidtune(sys,'pi')

C_pi =

1
Kp + Ki * ---

s

with Kp = 1.14, Ki = 0.454

Continuous-time PI controller in parallel form.

info =

Stable: 1
CrossoverFrequency: 0.5205

PhaseMargin: 60.0000

C_pi is a pid controller object that represents a PI controller. The fields
of info show that the tuning algorithm chooses an open-loop crossover
frequency of about 0.52 rad/s.

Examine the closed-loop step response (reference tracking) of the controlled
system.

T_pi = feedback(C_pi*sys, 1);
step(T_pi)

9-2

PID Controller Design at the Command Line

To improve the response time, you can set a higher target crossover frequency
than the result that pidtune automatically selects, 0.52. Increase the
crossover frequency to 1.0.

[C_pi_fast,info] = pidtune(sys,'pi',1.0)

C_pi_fast =

1
Kp + Ki * ---

s

with Kp = 2.83, Ki = 0.0495

Continuous-time PI controller in parallel form.

info =

Stable: 1
CrossoverFrequency: 1

PhaseMargin: 43.9973

9-3

9 PID Controller Design

The new controller achieves the higher crossover frequency, but at the cost
of a reduced phase margin.

Compare the closed-loop step response with the two controllers.

T_pi_fast = feedback(C_pi_fast*sys,1);
step(T_pi,T_pi_fast)
axis([0 30 0 1.4])
legend('C_pi','C_pi_fast')

This reduction in performance results because the PI controller does not have
enough degrees of freedom to achieve a good phase margin at a crossover
frequency of 1.0 rad/s. Adding a derivative action improves the response.

Design a PIDF controller for Gc with the target crossover frequency of 1.0
rad/s.

[C_pidf_fast,info] = pidtune(sys,'pidf',1.0)

C_pidf_fast =

9-4

PID Controller Design at the Command Line

1 s
Kp + Ki * --- + Kd * --------

s Tf*s+1

with Kp = 2.72, Ki = 1.03, Kd = 1.76, Tf = 0.00875

Continuous-time PIDF controller in parallel form.

info =

Stable: 1
CrossoverFrequency: 1

PhaseMargin: 60.0000

The fields of info show that the derivative action in the controller allows the
tuning algorithm to design a more aggressive controller that achieves the
target crossover frequency with a good phase margin.

Compare the closed-loop step response and disturbance rejection for the fast
PI and PIDF controllers.

T_pidf_fast = feedback(C_pidf_fast*sys,1);
step(T_pi_fast, T_pidf_fast);
axis([0 30 0 1.4]);
legend('C_pi_fast','C_pidf_fast');

9-5

9 PID Controller Design

You can compare the input (load) disturbance rejection of the controlled
system with the fast PI and PIDF controllers. To do so, plot the response of
the closed-loop transfer function from the plant input to the plant output.

S_pi_fast = feedback(sys,C_pi_fast);
S_pidf_fast = feedback(sys,C_pidf_fast);
step(S_pi_fast,S_pidf_fast);
axis([0 50 0 0.4]);
legend('C_pi_fast','C_pidf_fast');

9-6

PID Controller Design at the Command Line

This plot shows that the PIDF controller also provides faster disturbance
rejection.

9-7

9 PID Controller Design

Designing Cascade Control System with PI Controllers
This example shows how to design a cascade control loop with two PI
controllers using the pidtune command.

Introduction to Cascade Control

Cascade control is mainly used to achieve fast rejection of disturbance before
it propagates to the other parts of the plant. The simplest cascade control
system involves two control loops (inner and outer) as shown in the block
diagram below.

Controller C1 in the outer loop is the primary controller that regulates
the primary controlled variable y1 by setting the set-point of the inner
loop. Controller C2 in the inner loop is the secondary controller that rejects
disturbance d2 locally before it propagates to P1. For a cascade control
system to function properly, the inner loop must respond much faster than
the outer loop.

In this example, you will design a single loop control system with a PI
controller and a cascade control system with two PI controllers. The responses
of the two control systems are compared for both reference tracking and
disturbance rejection.

Plant

9-8

Designing Cascade Control System with PI Controllers

In this example, the inner loop plant P2 is

The outer loop plant P1 is

P2 = zpk([],-2,3);
P1 = zpk([],[-1 -1 -1],10);

Designing a Single Loop Control System with a PI Controller

Use pidtune command to design a PI controller in standard form for the
whole plant model P = P1 * P2.

The desired open loop bandwidth is 0.2 rad/s, which roughly corresponds
to the response time of 10 seconds.

% The plant model is P = P1*P2
P = P1*P2;
% Use a PID or PIDSTD object to define the desired controller structure
C = pidstd(1,1);
% Tune PI controller for target bandwidth is 0.2 rad/s

9-9

9 PID Controller Design

C = pidtune(P,C,0.2);
C

C =

1 1
Kp * (1 + ---- * ---)

Ti s

with Kp = 0.0119, Ti = 0.849

Continuous-time PI controller in standard form

Designing a Cascade Control System with Two PI Controllers

The best practice is to design the inner loop controller C2 first and then design
the outer loop controller C1 with the inner loop closed. In this example, the
inner loop bandwidth is selected as 2 rad/s, which is ten times higher than the
desired outer loop bandwidth. In order to have an effective cascade control
system, it is essential that the inner loop responds much faster than the outer
loop.

Tune inner-loop controller C2 with open-loop bandwidth at 2 rad/s.

C2 = pidtune(P2,pidstd(1,1),2);
C2

C2 =

1 1
Kp * (1 + ---- * ---)

Ti s

with Kp = 0.244, Ti = 0.134

Continuous-time PI controller in standard form

9-10

Designing Cascade Control System with PI Controllers

Tune outer-loop controller C1 with the same bandwidth as the single loop
system.

% Inner loop system when the control loop is closed first
clsys = feedback(P2*C2,1);
% Plant seen by the outer loop controller C1 is clsys*P1
C1 = pidtune(clsys*P1,pidstd(1,1),0.2);
C1

C1 =

1 1
Kp * (1 + ---- * ---)

Ti s

with Kp = 0.015, Ti = 0.716

Continuous-time PI controller in standard form

Performance Comparison

First, plot the step reference tracking responses for both control systems.

% single loop system for reference tracking
sys1 = feedback(P*C,1);
set(sys1,'Name','Single Loop');
% cascade system for reference tracking
sys2 = feedback(clsys*P1*C1,1);
set(sys2,'Name','Cascade');
% plot step response
figure;step(sys1,'r',sys2,'b')
legend('show','location','southeast')
title('Reference Tracking')

9-11

9 PID Controller Design

Secondly, plot the step disturbance rejection responses of d2 for both control
systems.

% single loop system for rejecting d2
sysd1 = feedback(P1,P2*C);
set(sysd1,'Name','Single Loop');
% cascade system for rejecting d2
sysd2 = P1/(1+P2*C2+P2*P1*C1*C2);
set(sysd2,'Name','Cascade');
% plot step response
figure;step(sysd1,'r',sysd2,'b')
legend('show')
title('Disturbance Rejection')

9-12

Designing Cascade Control System with PI Controllers

From the two response plots you can conclude that the cascade control system
performs much better in rejecting disturbance d2 while the set-point tracking
performances are almost identical.

9-13

9 PID Controller Design

9-14

10

Single-Input, Single-Output
Control Design

10 Single-Input, Single-Output Control Design

Getting Started with the SISO Design Tool
This example shows how the SISO Design Tool facilitates the compensator
design process by providing interactive and automated tools to tune
compensators for a feedback control system.

Compensator Design Task and the SISO Design Tool

The SISO Design Tool allows:

1) The design problem to be setup graphically by defining the control design
requirement on time, frequency, and pole/zero response plots.

2) Tuning the compensator with:

• automated design methods such as Ziegler Nichols, IMC, and LQG.

• graphically tuning poles and zeros on design plots such as Bode and root
locus.

• optimization to meet time and frequency-domain requirements using
Simulink Design Optimization™.

3) While tuning the compensators, the closed-loop and open-loop responses
are dynamically updated to display the performance of the control system.

The design process using the SISO Design Tool will be illustrated with an
example problem.

Compensator Design Problem Example

For this example we will design a compensator for the system

with the following design requirements:

• Zero steady state error with respect to a step input.

• 80% rise time < 1 second.

10-2

Getting Started with the SISO Design Tool

• Settling time < 2 seconds.

• Maximum overshoot < 20%.

• Open-loop crossover constraint of less than 5 rad/s.

Launching the SISO Design Tool and Configuring Design Objectives

For this example we will use the standard feedback structure with the
controller in the forward path which happens to be the default feedback
structure when launching the SISO Design Tool. To launch the SISO Design
Tool with the specified plant G type

>> sisotool(tf(1,[1,1]))

This will bring up two windows. The first window is Control and Estimation
Tools Manager (CETM)

10-3

10 Single-Input, Single-Output Control Design

and the second window is the SISO Design graphical editors

In the CETM the SISO Design Task node contains tabbed panels which are
used to configure the compensator design options as well as manipulate the
compensators. For complete details of the functionality for each of the panels
refer to the documentation.

For this design example we will use the root-locus plot and open-loop Bode
plot for graphically tuning the compensator and validate the design by
viewing the step response.

To view the closed-loop step response, click on the Analysis Plot tab in
the CETM. Now configure the plot by selecting "Step" for the first plot and

10-4

Getting Started with the SISO Design Tool

checking the first check box for the response "Closed-Loop r to y". This will
bring up the SISO Tool Viewer.

10-5

10 Single-Input, Single-Output Control Design

Now add the time domain design requirements to the step response plot by
right clicking on the axis and selecting the Design Requirements -> New
menu item. We will use the "Step response bounds" design requirement type
to specify the rise time, settling time and overshoot requirements.

10-6

Getting Started with the SISO Design Tool

We can now use this time response with its requirements to view the
performance of the compensator design.

10-7

10 Single-Input, Single-Output Control Design

To specify the frequency domain crossover requirement, right click the bode
axis in the SISO Design window and select the Design Requirement->New
menu item and specify an upper gain limit.

10-8

Getting Started with the SISO Design Tool

Now that the problem has been set up we will begin to design the compensator
to satisfy the problem specifications.

Tuning Compensators

Compensators can be manually tuned from the graphical editors or the
Compensator Editor tab of the CETM. For this example we will use the
graphical editors to tune the compensator. To begin the design an integrator
will be added to achieve zero steady state error to a step input. To add the
integrator to the compensator use the right-click menu on the root-locus plot
and select Add Pole/Zero->Integrator. To create a desirable shape for the
root locus plot we will add a zero at approximately -2. To add the zero, use
the right-click menu on the root-locus plot and select Add Pole/Zero->Real
Zero menu item and then left-click at approximately -2 on the real axis of
the root locus plot. Now in the bode plot adjust the open-loop gain by clicking
and dragging the curve on the magnitude plot such that the cross-over and
time domain constraints are satisfied.

10-9

10 Single-Input, Single-Output Control Design

10-10

Getting Started with the SISO Design Tool

To view the compensator go to Compensator Editor tab. Note that the
steps performed in the graphical tuning plots to tune the compensator can
also be accomplished from this panel.

10-11

10 Single-Input, Single-Output Control Design

Automated Tuning of Compensators

In addition to the manual tuning interfaces, the SISO Design Tool also
provides the following automated tuning algorithms:

• Use the PID tuning, IMC tuning, and LQG synthesis options in
the Automated Tuning panel to compute initial parameters for the
compensators based on tuning parameters such as closed-loop time
constants. See the example "Automated Controller Design in the SISO
Design Tool".

• Use the Optimization based tuning option in the Automated Tuning
panel (requires Simulink Design Optimization) to tune the compensators
using both time and frequency domain design requirements. See the
example "DC Motor Controller Tuning".

Summary

10-12

Getting Started with the SISO Design Tool

Using the SISO Design Tool we were able to successfully design a compensator
such that all of the specified design requirements were satisfied. The tool
facilitated the heuristic process of compensator design by providing an
interactive and visual environment for

• Specifying the design requirements

• Tuning the compensator, and

• Evaluating the performance of the design.

10-13

10 Single-Input, Single-Output Control Design

10-14

Customization

• Chapter 11, “Preliminaries”

• Chapter 12, “Setting Toolbox Preferences”

• Chapter 13, “Setting Tool Preferences”

• Chapter 14, “Customizing Response Plot Properties”

11

Preliminaries

• “Terminology” on page 11-2

• “Property and Preferences Hierarchy” on page 11-3

• “Ways to Customize Plots” on page 11-5

11 Preliminaries

Terminology
You can use the Control System Toolbox editors to set properties and
preferences in the SISO Design Tool, the LTI Viewer, and in any response
plots that you create from the MATLAB prompt.

Properties refer to settings that are specific to an individual response plot.
This includes the following:

• Axes labels, and limits

• Data units and scales

• Plot styles, such as grids, fonts, and axes foreground colors

• Plot characteristics, such as rise time, peak response, and gain and phase
margins

Preferences refers to properties that persist either

• Within a single session for a specific instance of an LTI Viewer or a SISO
Design Tool

• Across Control System Toolbox sessions

The former are called tool preferences, the latter toolbox preferences.

11-2

Property and Preferences Hierarchy

Property and Preferences Hierarchy
You can use three graphical user interfaces (GUIs) to control over the
visualization of time and frequency plots generated by the toolbox:

• Toolbox Preferences

• Tool Preferences

• Plot Properties

Preferences refer to global options that you can save from session to session or
to any LTI Viewer or SISO Design Tool that you open during a single session.
Properties are options that apply only to the current window. This section
gives an overview of the three GUIs.

Although you can set plot properties in any response plot, you can use the
Toolbox Preferences Editor to set properties for any response plot that you
generate. This figure shows the inheritance hierarchy from toolbox preference
to plot properties.

Preference and Property Inheritance Hierarchy

You can activate preference and plot editors by doing the following:

11-3

11 Preliminaries

• Toolbox preferences — Select Toolbox Preferences under File in either
the LTI Viewer or the SISO Design Tool.

• Tool preferences — Select SISO Tool Preferences under Edit for the
SISO Design Tool and Viewer Preferences under Edit in the LTI Viewer.

• Plot properties — Double-click any Control System Toolbox response plot
or select Properties from the right-click menus.

11-4

Ways to Customize Plots

Ways to Customize Plots
You can customize your plots by changing plot properties. For example, you
can change the plot units. The following table describes ways that you can
customize plots.

To change plot properties of For more information, see

A single plot, directly from the plot • “Customizing Response Plots
Using the Response Plots
Property Editor” on page 14-3
and “Customizing Response Plots
Using Plot Tools” on page 14-19
for response plots

• “LTI Viewer Preferences Editor”
on page 13-3 for LTI Viewer plots

• “Graphical Tuning Window
Preferences Editor” on page 13-9
for Graphical Tuning Window
plots

A single plot or many plots,
programmatically from the
command line

“Customizing Response Plots from
the Command Line” on page 14-23

All Control System Toolbox plots
(changes apply globally to all plot
types and persist from session to
session)

“Toolbox Preferences Editor” on page
12-2

11-5

11 Preliminaries

11-6

12

Setting Toolbox Preferences

• “Toolbox Preferences Editor” on page 12-2

• “Units Pane” on page 12-4

• “Style Pane” on page 12-7

• “Options Pane” on page 12-8

• “SISO Tool Pane” on page 12-9

12 Setting Toolbox Preferences

Toolbox Preferences Editor

In this section...

“Overview of the Toolbox Preferences Editor” on page 12-2

“Opening the Toolbox Preferences Editor” on page 12-2

Overview of the Toolbox Preferences Editor
The Toolbox Preferences editor allows you to set plot preferences that will
persist from session to session.

Opening the Toolbox Preferences Editor
To open the Toolbox Preferences editor, select Toolbox Preferences from
the File menu of the LTI Viewer or the SISO Design Tool. Alternatively,
you can type

ctrlpref

at the MATLAB prompt.

Control System Toolbox™ Preferences Editor

12-2

Toolbox Preferences Editor

• “Units Pane” on page 12-4

• “Style Pane” on page 12-7

• “Options Pane” on page 12-8

• “SISO Tool Pane” on page 12-9

12-3

12 Setting Toolbox Preferences

Units Pane

Use the Units pane to set preferences for the following:

• Frequency

The default auto option uses rad/TimeUnit as the frequency units relative
to the system time units, where TimeUnit is the system time units specified
in the TimeUnit property of the system on frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

12-4

Units Pane

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

• Time

The default auto option uses the time units specified in the TimeUnit
property of the system on the time- and frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

Other Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

- 'seconds'

12-5

12 Setting Toolbox Preferences

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'

12-6

Style Pane

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for all plots you create. This figure shows the Style pane.

You have the following choices:

• Grid — Activate grids by default in new plots.

• Fonts— Set the font size, weight (bold), and angle (italic).

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element
vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select
button to open the Select Colors dialog box. See “Select colors” on page
13-13 for more information.

12-7

12 Setting Toolbox Preferences

Options Pane
The Options pane has selections for time responses and frequency responses.
This figure shows the Options pane with default settings.

The following are the available options for the Options pane:

• Time Response:

- Show settling time within xx%— You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time from xx% to yy%— The standard definition of rise time
is the time it takes the signal to go from 10% to 90% of the final value.
You can choose any percentages you like (from 0% to 100%), provided
that the first value is smaller than the second.

• Frequency Response:

- Only show magnitude above xx—Specify a lower limit for magnitude
values in response plots so that you can focus on a region of interest.

- Unwrap phase—By default, the phase is unwrapped. Wrap the phrase
by clearing this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).

12-8

SISO Tool Pane

SISO Tool Pane
The SISO Tool pane has settings for the SISO Design Tool. This figure shows
the SISO Tool pane with default settings.

You can make the following selections:

• Compensator Format— Select the time constant, natural frequency, or
zero/pole/gain format. The time constant format is a factorization of the
compensator transfer function of the form

DC
Tz s

Tp s
×

+()
+()

1
1

1

1

where DC is compensator DC gain, Tz1, Tz2, ..., are the zero time constants,
and Tp1, Tp2, ..., are the pole time constants.

The natural frequency format is

DC
s

s

z

p
×

+()
+()

1

1
1

1

12-9

12 Setting Toolbox Preferences

where DC is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the
natural frequencies of the zeros and poles, respectively.

The zero/pole/gain format is

K
s z

s p
×

+()
+()

1

1

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the
zero and pole locations, respectively.

• Bode Options — By default, the SISO Design Tool shows the plant and
sensor poles and zeros as blue x’s and o’s, respectively. Clear this box to
eliminate the plant’s poles and zeros from the Bode plot. Note that the
compensator poles and zeros (in red) will still appear.

12-10

13

Setting Tool Preferences

• “Introduction” on page 13-2

• “LTI Viewer Preferences Editor” on page 13-3

• “Graphical Tuning Window Preferences Editor” on page 13-9

13 Setting Tool Preferences

Introduction
Both the LTI Viewer and the Graphical Tuning Window have Tool Preferences
Editors. These editors comprise the middle layer of “Property and Preferences
Hierarchy” on page 11-3.

Both editors allow you to set default characteristics for specific instances of
LTI Viewers and Graphical Tuning windows. If you open a new instance of
either, each defaults to the characteristics specified in the Toolbox Preferences
editor.

13-2

LTI Viewer Preferences Editor

LTI Viewer Preferences Editor

In this section...

“Opening the LTI Viewer Preference Editor” on page 13-3

“Units Pane” on page 13-4

“Style Pane” on page 13-6

“Options Pane” on page 13-7

“Parameters Pane” on page 13-8

Opening the LTI Viewer Preference Editor
Select Viewer Preferences under the Edit menu of the LTI Viewer to open
the LTI Viewer Preferences editor, which is a tool for customizing various
LTI Viewer properties, including units, fonts, and various other viewer
characteristics. This figure shows the editor open to its first pane.

• “Units Pane” on page 13-4

• “Style Pane” on page 13-6

• “Options Pane” on page 13-7

• “Parameters Pane” on page 13-8

13-3

13 Setting Tool Preferences

Units Pane

You can select the following on the Units pane:

• Frequency

The default auto option uses rad/TimeUnit as the frequency units relative
to the system time units, where TimeUnit is the system time units specified
in the TimeUnit property of the system on frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

13-4

LTI Viewer Preferences Editor

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

• Time

The default auto option uses the time units specified in the TimeUnit
property of the system on the time- and frequency-domain plots. For
multiple systems with different time units, the units of the first system
is used.

Other Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

13-5

13 Setting Tool Preferences

- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and
axes foreground colors for all plots in the LTI Viewer. This figure shows the
Style pane.

You have the following choices:

• Grid — Activate grids for all plots in the LTI Viewer

• Fonts— Set the font size, weight (bold), and angle (italic)

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element

13-6

LTI Viewer Preferences Editor

vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

• If you do not want to specify the RGB values numerically, press the Select
button to open the Select Colors window. See “Select colors” on page
13-13 for more information.

Options Pane
The Options pane has selections for time responses and frequency responses.

The following choices are available:

• Time Response:

- Show settling time within xx%— You can set the threshold of the settling
time calculation to any percentage from 0 to 100%. The default is 2%.

- Specify rise time from xx% to yy%— The standard definition of rise time
is the time it takes the signal to go from 10% to 90% of the final value.
You can choose any percentages you like (from 0% to 100%), provided
that the first value is smaller than the second.

• Frequency Response:

- Only show magnitude above xx—Specify a lower limit for magnitude
values in response plots so that you can focus on a region of interest.

13-7

13 Setting Tool Preferences

- Unwrap phase—By default, the phase is unwrapped. Wrap the phrase
by clearing this box. If the phase is wrapped, all phase values are shifted
such that their equivalent value displays in the range [-180°, 180°).

Parameters Pane
Use the Parameters pane, shown below, to specify input vectors for time and
frequency simulation.

The defaults are to generate time and frequency vectors for your plots
automatically. You can, however, override the defaults as follows:

• Time Vector:

- Define stop time — Specify the final time value for your simulation

- Define vector — Specify the time vector manually using equal-sized
time steps

• Frequency Vector:

- Define range — Specify the bandwidth of your response. Whether it’s in
rad/sec or Hz depends on the selection you made in the Units pane.

- Define vector — Specify the vector for your frequency values. Any real,
positive, strictly monotonically increasing vector is valid.

13-8

Graphical Tuning Window Preferences Editor

Graphical Tuning Window Preferences Editor

In this section...

“Opening the Graphical Tuning Window Preferences Editor” on page 13-9

“Units Pane” on page 13-10

“Time Delays Pane” on page 13-11

“Style Pane” on page 13-12

“Options Pane” on page 13-15

“Line Colors Pane” on page 13-16

Opening the Graphical Tuning Window Preferences
Editor
To open the SISO Tool Preferences editor, select SISO Tool Preferences
from the Edit menu of the Graphical Tuning window. This window opens.

13-9

13 Setting Tool Preferences

Units Pane

The Units pane has settings for the following units:

• Frequency

The default units are rad/second.

Other Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

13-10

Graphical Tuning Window Preferences Editor

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)

• Phase — Degrees or radians

For frequency and magnitude axes, you can select logarithmic or linear scales.

Time Delays Pane

13-11

13 Setting Tool Preferences

In the Time Delays pane, specify the order for Padé approximations of delays
in your system as either:

• Actual Padé order

• Bandwidth of accuracy (rad/s) — The highest frequency at which the
approximated response matches the actual system. The software computes
and displays the corresponding Padé order.

The following compensator design tools do not support systems with exact
time delays. If your system has exact continuous-time delays, these tools
automatically compute a Padé approximation of the delays. In this case, you
receive a notification.

• Root locus

• Pole-zero

• PID automated tuning

• IMC automated tuning

• LQG automated tuning

• Loop shaping automated tuning

Tip To determine if a certain Padé order gives a good approximation of your
system, use the pade command to approximate your system. Then, compare a
plot of the two systems using the bode command.

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for all plots in the Graphical Tuning Window. This figure
shows the Style pane.

13-12

Graphical Tuning Window Preferences Editor

Grids Panel
Select the box to activate grids for all plots in the GRAPHICAL Tuning
Window

Fonts Panel
Set the font size, weight (bold), and angle (italic) by using the menus and
check boxes.

Colors Panel
Specify the color vector to use for the axes foreground, which includes the X-Y
axes, grid lines, and tick labels. Use a three-element vector to represent red,
green, and blue (RGB) values. Vector element values can range from 0 to 1.

Select colors. Click the Select button to open the Select Color window for
the axes foreground.

13-13

13 Setting Tool Preferences

You can use this window to choose axes foreground colors without having to
set RGB (red-green-blue) values numerically. To make your selections, click
on the colored rectangles and press OK. If you want a broader range of colors,
click theMore Colors button. This opens the More Colors window, as shown
in the following figure.

Click on the array of color swatches to select a color. Alternatively, click the
HSB tab to use the Hue Saturation Brightness (HSB) color picker. Or, click
the RGB tab to enter numeric RGB values.

13-14

Graphical Tuning Window Preferences Editor

When you select a color, the Preview section of the window changes to
preview your selection. Click OK to accept the choice. Click Reset to reset
the selection.

Options Pane
The Options pane, shown below, has selections for compensator format and
Bode diagrams.

You can make the following selections:

• Compensator Format— Select the time constant, natural frequency, or
zero/pole/gain format. The time constant format is a factorization of the
compensator transfer function of the form

DC
Tz s

Tp s
×

+()
+()

1
1

1

1

where DC is compensator DC gain, Tz1, Tz2, ..., are the zero time constants,
and Tp1, Tp2, ..., are the pole time constants.

The natural frequency format is

13-15

13 Setting Tool Preferences

DC
s

s

z

p
×

+()
+()

1

1
1

1

where DC is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the
natural frequencies of the zeros and poles, respectively.

The zero/pole/gain format is

K
s z

s p
×

+()
+()

1

1

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the
zero and pole locations, respectively.

• Bode Options— By default, the GRAPHICAL Tuning Window shows the
plant and sensor poles and zeros as blue x’s and o’s, respectively. Clear this
check box to eliminate the plant’s poles and zeros from the Bode plot. Note
that the compensator poles and zeros (in red) will still appear.

Line Colors Pane
The Line Colors pane, shown below, has selections for specify the colors of the
lines in the response plots of the Graphical Tuning Window.

13-16

Graphical Tuning Window Preferences Editor

To change the colors of plot lines associated with parts of your model, specify
a three-element vector to represent red, green, and blue (RGB) values. Vector
element values can range from 0 to 1.

If you do not want to specify the RGB values numerically, click the Select
button to open the Select Color window. See “Select colors” on page 13-13
for more information.

13-17

13 Setting Tool Preferences

13-18

14

Customizing Response Plot
Properties

• “Introduction” on page 14-2

• “Customizing Response Plots Using the Response Plots Property Editor”
on page 14-3

• “Customizing Response Plots Using Plot Tools” on page 14-19

• “Customizing Response Plots from the Command Line” on page 14-23

• “Customizing Plots Inside the SISO Design Tool” on page 14-48

14 Customizing Response Plot Properties

Introduction
The lowest level of the “Property and Preferences Hierarchy” on page 11-3 is
setting response plot properties. This means that any property you set for a
given plot will only affect that plot.

14-2

Customizing Response Plots Using the Response Plots Property Editor

Customizing Response Plots Using the Response Plots
Property Editor

In this section...

“Opening the Property Editor” on page 14-3

“Overview of Response Plots Property Editor” on page 14-4

“Labels Pane” on page 14-6

“Limits Pane” on page 14-6

“Units Pane” on page 14-7

“Style Pane” on page 14-16

“Options Pane” on page 14-17

“Editing Subplots Using the Property Editor” on page 14-18

Opening the Property Editor
After you create a response plot, there are two ways to open the Property
Editor:

• Double-click in the plot region

• Select Properties from the right-click menu

Before looking at the Property Editor, open a step response plot using these
commands.

load ltiexamples
step(sys_dc)

This creates a step plot. Select Properties from the right-click menu. Note
that when you open the Property Editor, a set of black squares appear
around the step response, as this figure shows:

14-3

14 Customizing Response Plot Properties

SISO System Step Response

Overview of Response Plots Property Editor
This figure shows the Property Editor dialog box for a step response.

14-4

Customizing Response Plots Using the Response Plots Property Editor

The Property Editor for Step Response

In general, you can change the following properties of response plots. Note
that only the Labels and Limits panes are available when using the
Property Editor with Simulink Design Optimization™ software.

• Titles and X- and Y-labels in the Labels pane.

• Numerical ranges of the X and Y axes in the Limits pane.

• Units where applicable (e.g., rad/s to Hertz) in the Units pane.

If you cannot customize units, as is the case with step responses, the
Property Editor will display that no units are available for the selected plot.

• Styles in the Styles pane.

You can show a grid, adjust font properties, such as font size, bold and
italics, and change the axes foreground color

• Change options where applicable in the Options pane.

These include peak response, settling time, phase and gain margins, etc.
Plot options change with each plot response type. The Property Editor
displays only the options that make sense for the selected response plot.
For example, phase and gain margins are not available for step responses.

As you make changes in the Property Editor, they display immediately in the
response plot. Conversely, if you make changes in a plot using right-click

14-5

14 Customizing Response Plot Properties

menus, the Property Editor for that plot automatically updates. The Property
Editor and its associated plot are dynamically linked.

Labels Pane
To specify new text for plot titles and axis labels, type the new string in
the field next to the label you want to change. Note that the label changes
immediately as you type, so you can see how the new text looks as you are
typing.

Limits Pane
Default values for the axes limits make sure that the maximum and minimum
x and y values are displayed. If you want to override the default settings,
change the values in the Limits fields. The Auto-Scale box automatically
clears if you click a different field. The new limits appear immediately in
the response plot.

To reestablish the default values, select the Auto-Scale box again.

14-6

Customizing Response Plots Using the Response Plots Property Editor

Units Pane
You can use the Units pane to change units in your response plot. The
contents of this pane depend on the response plot associated with the editor.

The following table lists the options available for the response objects. Use
the menus to toggle between units.

14-7

14 Customizing Response Plot Properties

Optional Unit Conversions for Response Plots

Response Plot Unit Conversions

Bode and
Bode Magnitude

• Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

14-8

Customizing Response Plots Using the Response Plots Property Editor

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Frequency scale is logarithmic or linear.

• Magnitude in decibels (dB) or the absolute
value

• Phase in degrees or radians

Impulse • Time.

By default, shows the system time units
specified in the TimeUnit property of the
input system.

Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'

14-9

14 Customizing Response Plot Properties

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

Nichols Chart • Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

14-10

Customizing Response Plots Using the Response Plots Property Editor

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Phase in degrees or radians

Nyquist Diagram • Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

14-11

14 Customizing Response Plot Properties

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

Pole/Zero Map • Time.

By default, shows the system time units
specified in the TimeUnit property of the
input system.

Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'

• Frequency

14-12

Customizing Response Plots Using the Response Plots Property Editor

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

14-13

14 Customizing Response Plot Properties

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

Singular Values • Frequency

By default, shows rad/TimeUnit where
TimeUnit is the system time units specified in
the TimeUnit property of the input system.

Frequency Units Options

- 'Hz'

- 'rad/s'

- 'rpm'

- 'kHz'

- 'MHz'

- 'GHz'

- 'rad/nanosecond'

- 'rad/microsecond'

- 'rad/millisecond'

- 'rad/minute'

- 'rad/hour'

- 'rad/day'

- 'rad/week'

- 'rad/month'

- 'rad/year'

- 'cycles/nanosecond'

14-14

Customizing Response Plots Using the Response Plots Property Editor

Optional Unit Conversions for Response Plots (Continued)

Response Plot Unit Conversions

- 'cycles/microsecond'

- 'cycles/millisecond'

- 'cycles/hour'

- 'cycles/day'

- 'cycles/week'

- 'cycles/month'

- 'cycles/year'

• Frequency scale is logarithmic or linear.

• Magnitude in decibels or the absolute value
using logarithmic or linear scale

Step • Time.

By default, shows the system time units
specified in the TimeUnit property of the
input system.

Time Units Options

- 'nanoseconds'

- 'microseconds'

- 'milliseconds'

- 'seconds'

- 'minutes'

- 'hours'

- 'days'

- 'weeks'

- 'months'

- 'years'

14-15

14 Customizing Response Plot Properties

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes
foreground colors for response plots.

You have the following choices:

• Grid — Activate grids by default in new plots.

• Fonts— Set the font size, weight (bold), and angle (italic) for fonts used in
response plot titles, X/Y-labels, tick labels, and I/O-names.

• Colors — Specify the color vector to use for the axes foreground, which
includes the X-Y axes, grid lines, and tick labels. Use a three-element
vector to represent red, green, and blue (RGB) values. Vector element
values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select
button to open the Select Color dialog box. See “Select colors” on page
13-13 for more information.

14-16

Customizing Response Plots Using the Response Plots Property Editor

Options Pane
The Options pane allows you to customize response characteristics for plots.
Each response plot has its own set of characteristics and optional settings; the
table below lists them. Use the check boxes to activate the feature and the
fields to specify rise or settling time percentages.

Response Characteristic Options for Response Plots

Plot Customizable Feature

Bode Diagram and Bode
Magnitude

Select lower magnitude limit
Adjust phase offsets to keep phase close to a
particular value, within a range of ±180º, at a
given frequency.
Unwrap phase (default is unwrapped)

Impulse Show settling time within xx% (specify the
percentage)

14-17

14 Customizing Response Plot Properties

Response Characteristic Options for Response Plots (Continued)

Plot Customizable Feature

Nichols Chart Select lower magnitude limit
Adjust phase offsets to keep phase close to a
particular value, within a range of ±180º, at a
given frequency.
Unwrap phase (default is unwrapped)

Nyquist Diagram None

Pole/Zero Map None

Sigma None

Step Show settling time within xx% (specify the
percentage)
Show rise time from xx to yy% (specify the
percentages)

Editing Subplots Using the Property Editor
If you create more than one plot in a single figure window, you can edit each
plot individually. For example, the following code creates a figure with two
plots, a step and an impulse response with two randomly selected systems:

subplot(2,1,1)
step(rss(2,1))
subplot(2,1,2)
impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot
to activate the Property Editor. You will see a set of small black squares
appear around the step response, indicating that it is the active plot for the
editor. To switch to the lower (impulse response) plot, just click once in the
impulse response plot region. The set of black squares switches to the impulse
response, and the Property Editor updates as well.

14-18

Customizing Response Plots Using Plot Tools

Customizing Response Plots Using Plot Tools

In this section...

“Properties You Can Customize Using Plot Tools” on page 14-19

“Opening and Working with Plot Tools” on page 14-20

“Example of Changing Line Color Using Plot Tools” on page 14-20

Properties You Can Customize Using Plot Tools
The following table shows the plot properties you can customize using plot
tools.

For... You can customize the following properties:

Responses • System name

• Line color

• Line style

• Line width

• Marker type

For SISO systems, theses changes apply to a single plot
line or an array of plot lines representing the system on one
axis. For MIMO systems, these changes apply to all of the
plotted lines representing the system on multiple axis.

Plot axes • Title

• X-label

• Y-label

Figures • Figure name

• Colormap

• Figure color

14-19

14 Customizing Response Plot Properties

Note To make other changes to response plots, see “Customizing Response
Plots Using the Response Plots Property Editor” on page 14-3 and
“Customizing Response Plots from the Command Line” on page 14-23.

Opening and Working with Plot Tools
See the following documentation for information about how to open and work
with Plot Tools and the Plot Tools Property Editor:

• “Working in Plot Edit Mode” in the MATLAB documentation.

• “The Property Editor” in the MATLAB documentation.

Example of Changing Line Color Using Plot Tools
To change the line color of a MIMO system plot:

1 Create a step response plot of a MIMO system by typing

sys_mimo=rss(3,3,3);
stepplot(sys_mimo)

2 In the figure window, select View > Property Editor.

This action opens the Plot Tools Property Editor.

3 Click the plot line in any of the nine axis.

This action selects the response for the sys_mimo system and updates the
Plot Tools Property Editor to show the available editable properties for
the response.

14-20

Customizing Response Plots Using Plot Tools

Note The Plot Tools Property Editor applies changes to the response of
the MIMO system. Any change you make applies to all of the plotted lines
in the figure.

14-21

14 Customizing Response Plot Properties

Tip You can also change the properties of the response using the right-click
menu while in plot edit mode.

4 In the Property Editor – Waveform pane, select the color red.

This action changes the color of the response that represents the MIMO
system to red.

14-22

Customizing Response Plots from the Command Line

Customizing Response Plots from the Command Line

In this section...

“Overview of Customizing Plots from the Command Line” on page 14-23

“Obtaining Plot Handles” on page 14-26

“Obtaining Plot Options Handles” on page 14-27

“Examples of Customizing Plots from the Command Line” on page 14-30

“Properties and Values Reference” on page 14-33

“Property Organization Reference” on page 14-47

Overview of Customizing Plots from the Command
Line

• “When to Customize Plots from the Command Line” on page 14-23

• “How to Customize Plots from the Command Line” on page 14-23

• “Example of Changing Bode Plot Units from the Command Line” on page
14-25

When to Customize Plots from the Command Line
You can customize any response plot from the command line. The command
line is the most efficient way to customize a large number of plots. For
example, if you have a batch job that produces many plots, you can change the
x-axis units automatically for all the plot with just a few lines of code.

How to Customize Plots from the Command Line
You can use the Control System Toolbox application program interface (API)
to customize plotting options for response plots from the command line.

14-23

14 Customizing Response Plot Properties

Note This section assumes some very basic familiarity with Handle Graphics®
and object-oriented concepts, namely, classes, objects, and Handle Graphics
handles. See “Classes in the MATLAB Language” and “Graphics Objects” in
the MATLAB online documentation for more information.

To customize plots from the command line:

1 Obtain the plot handle, which is an identifier for the plot, using the API’s
plotting syntax.

For example,

h=stepplot(sys)

returns the plot handle h for the step plot.

For more information on obtaining plot handles, see “Obtaining Plot
Handles” on page 14-26.

2 Obtain the plot options handle, which is an identifier for all settable plot
options. To get a plot options handle for a given plot, type

p=getoptions(h);

p is the plot options handle for plot handle h.

For more information on obtaining plot options handles, see “Obtaining
Plot Options Handles” on page 14-27.

3 Use setoptions, along with the plot handle and the plot options handle, to
access and modify many plot options.

Note You can also use setoptions to customize plots using property/value
pairs instead of the plot options handle. Using property/value pairs shortens
the procedure to one line of code.

14-24

Customizing Response Plots from the Command Line

Example of Changing Bode Plot Units from the Command Line
You can change of the following plot from rad/s to Hz.

s = tf('s');
sys= 1/(s+1);
h= bodeplot(sys);

To change the units to Hz, type the following:

p = getoptions(h);
p.FreqUnits = 'Hz';
setoptions(h,p)

The units for the x-axis are now in Hz.

14-25

14 Customizing Response Plot Properties

Note You can also change the plot units to Hz using property/value pairs
by typing

setoptions(h,'FreqUnits','Hz');

For more examples of customizing plots from the command line, see
“Examples of Customizing Plots from the Command Line” on page 14-30.

Obtaining Plot Handles
To programmatically interact with response plot, you need the plot handle.
This handle is an identifier to the response plot object. Because the Control
System Toolbox plotting commands, bode, rlocus, etc., all use the plot handle
internally, this API provides a set of commands that explicitly return the
handle to your response plot. These functions all end with "plot," which makes
them easy to identify. This table lists the functions.

14-26

Customizing Response Plots from the Command Line

Functions That Return the Plot Handle

Function Plot

bodeplot Bode magnitude and phase

hsvplot Hankel singular values

impulseplot Impulse response

initialplot Initial condition

iopzplot Pole/zero maps for input/output pairs

lsimplot Time response to arbitrary inputs

nicholsplot Nichols chart

nyquistplot Nyquist

pzplot Pole/zero

rlocusplot Root locus

sigmaplot Singular values of the frequency response

stepplot Step response

To get a plot handle for any response plot, use the functions from the table.
For example,

h = bodeplot(sys)

returns plot handle h (it also renders the Bode plot). Once you have this
handle, you can modify the plot properties using the setoptions and
getoptions methods of the plot object, in this case, a Bode plot handle.

Obtaining Plot Options Handles

• “Overview of Plot Options Handles” on page 14-28

• “Retrieving a Handle” on page 14-28

• “Creating a Handle” on page 14-28

• “Which Properties Can You Modify?” on page 14-29

14-27

14 Customizing Response Plot Properties

Overview of Plot Options Handles
Once you have the plot handle, you need the plot options handle, which is an
identifier for all the settable plot properties for a given response plot. There
are two ways to create a plot options handle:

• Retrieving a Handle — Use getoptions to get the handle.

• Creating a Handle — Use <responseplot>options to instantiate a handle.
See Functions for Creating Plot Options Handles on page 14-29 for a
complete list.

Retrieving a Handle
The getoptions function retrieves a plot options handle from a plot handle.

p=getoptions(h) % Returns plot options handle p for plot handle h.

If you specify a property name as an input argument, getoptions returns the
property value associated with the property name.

property_value=getoptions(h,PropertyName) % Returns a property
% value.

Creating a Handle
You can create a default plot options handle by using functions in the form of

<responseplot>options

For example,

p=bodeoptions;

instantiates a handle for Bode plots. See “Properties and Values Reference”
on page 14-33 for a list of default values.

If you want to set the default values to the Control System Toolbox default
values, pass cstprefs to the function. For example,

p = bodeoptions('cstprefs');

14-28

Customizing Response Plots from the Command Line

set the Bode plot property/value pairs to the Control System Toolbox default
values.

This table lists the functions that create a plot options handle.

Functions for Creating Plot Options Handles

Function Type of Plot Options Handle Created

bodeoptions Bode phase and magnitude

hsvoptions Hankel singular values

nicholsoptions Nichols plot

nyquistoptions Nyquist plot

pzoptions Pole/zero plot

sigmaoptions Sigma (singular values) plot

timeoptions Time response (impulse, step, etc.)

Which Properties Can You Modify?
Use

help <responseplot>options

to see a list of available property value pairs that you can modify. For example,

help bodeoptions

You can modify any of these parameters using setoptions. The next topic
provides examples of modifying various response plots.

See “Properties and Values Reference” on page 14-33 for a complete list of
property/value pairs for response plots.

14-29

14 Customizing Response Plot Properties

Examples of Customizing Plots from the Command
Line

• “Manipulating Plot Options Handles” on page 14-30

• “Changing Plot Units” on page 14-30

• “Create Plots Using Existing Plot Options Handle” on page 14-31

• “Creating a Default Plot Options Handle” on page 14-32

• “Using Dot Notation Like a Structure” on page 14-32

• “Setting Property Pairs in setoptions” on page 14-33

Manipulating Plot Options Handles
There are two fundamental ways to manipulate plot option handles:

• Dot notation — Treat the handle like a MATLAB structure.

• Property value pairs — Specify property/value pairs explicitly as input
arguments to setoptions.

For some examples, both dot notation and property/value pairs approaches
are shown. For all examples, use

sys=tf(1,[1 1])

for the system.

Changing Plot Units
Change the frequency units of a Bode plot from rad/s to Hz.

h = bodeplot(sys);
p = getoptions(h);
p.FreqUnits = 'Hz'
setoptions(h,p)

or, for the last three lines, substitute

setoptions(h,'FreqUnits','Hz')

14-30

Customizing Response Plots from the Command Line

Create Plots Using Existing Plot Options Handle
You can use an existing plot options handle to customize a second plot:

h1 = bodeplot(sys);
p1 = getoptions(h1);
h2 = bodeplot(sys,p1);

or

h1 = bodeplot(sys);
h2 = bodeplot(sys2);
setoptions(h2,getoptions(h1))

14-31

14 Customizing Response Plot Properties

Creating a Default Plot Options Handle
Instantiate a plot options handle with this code.

p = bodeoptions;

Change the frequency units and apply the changes to sys.

p.FreqUnits ='Hz';
h = bodeplot(sys,p);

Using Dot Notation Like a Structure
You can always use dot notation to assign values to properties.

h1 = bodeplot(sys)
p1 = getoptions(h1)
p1.FreqUnits = Hz'
p1.Title.String = 'My Title';
setoptions(h1,p1)

14-32

Customizing Response Plots from the Command Line

Setting Property Pairs in setoptions
Instead of using dot notation, specify frequency units as property/value pairs
in setoptions.

h1 = bodeplot(sys)
setoptions(h1,'FreqUnits','Hz')

Verify that the units have changed from rad/s to Hz.

getoptions(h1,'FreqUnits') % Returns frequency units for h1.

ans =

Hz

Properties and Values Reference

• “Property/Value Pairs Common to All Response Plots” on page 14-33

• “Bode Plots” on page 14-38

• “Hankel Singular Values” on page 14-40

• “Nichols Plots” on page 14-40

• “Nyquist Charts” on page 14-42

• “Pole/Zero Maps” on page 14-43

• “Sigma Plots” on page 14-45

• “Time Response Plots” on page 14-46

Property/Value Pairs Common to All Response Plots
The following tables discuss property/value pairs common to all response plots.

Title

Property
Default
Value Description

Title.String none String

Title.FontSize 8 Double

14-33

14 Customizing Response Plot Properties

Title (Continued)

Property
Default
Value Description

Title.FontWeight normal [light | normal | demi]

Title.FontAngle normal [normal | italic | oblique]

Title.Color [0 0 0] 1-by-3 RGB vector

X Label

Property
Default
Value Description

XLabel.String none String

Xlabel.FontSize 8 Double

Xlabel.FontWeight normal [light | normal | demi]

XLabel.FontAngle normal [normal | italic | oblique]

Xlabel.Color [0 0 0] 1-by-3 RGB vector

Y Label

Property Default Value Description

YLabel.String none String

Ylabel.FontSize 8 Double

Ylabel.FontWeight normal [light | normal | demi]

YLabel.FontAngle normal [normal | italic |
oblique]

Ylabel.Color [0 0 0] 1-by-3 RGB vector

14-34

Customizing Response Plots from the Command Line

Tick Label

Property Default Value Description

TickLabel.FontSize 8 Double

TickLabel.FontWeight normal [light | normal | demi]

TickLabel.FontAngle normal [normal | italic |
oblique]

Ticklabel.Color [0 0 0] 1-by-3 RGB vector

Grid and Axis Limits

Property
Default
Value Description

grid off [on | off]

Xlim {[]} A cell array of 1-by-2 doubles that specifies the
x-axis limits when XLimMode is set to manual.
When XLim is scalar, scalar expansion is applied;
otherwise the length of the cell array must equal
the number of columns (i.e., number of system
inputs) for the plot. The 1-by-2 doubles must be a
strictly increasing pair [xmin, xmax].

XLimMode {auto} A cell array of strings [auto | manual] that
specifies the x-axis limits mode. When XLimMode
is set to manual the limits are set to the values
specified in XLim. When XLimMode is scalar, scalar
expansion is applied; otherwise the length of the
cell array must equal the number of columns (i.e.,
number of system inputs) for the plot.

14-35

14 Customizing Response Plot Properties

Grid and Axis Limits (Continued)

Property
Default
Value Description

YLim {[]} A cell array of 1-by-2 doubles specifies the y-axis
limits when YLimMode is set to manual. When
YLim is scalar, scalar expansion is applied;
otherwise the length of the cell array must equal
the number of rows (i.e., number of system
outputs) for the plot. The 1-by-2 doubles must be
a strictly increasing pair [ymin, ymax].

YLimMode {auto} A cell array of strings [auto | manual] that
specifies the y-axis limits mode. When YLimMode
is set to manual the limits are set to the values
specified in YLim. When YLimMode is scalar,
scalar expansion is applied; otherwise the length
of the cell array must equal the number of rows
(i.e., number of system outputs) for the plot.

I/O Grouping

Property Default Value Description

IOGrouping none [none | inputs | outputs | all]
Specifies input/output groupings for
responses.

14-36

Customizing Response Plots from the Command Line

Input Labels

Property
Default
Value Description

InputLabels.FontSize 8 Double

InputLabels.FontWeight normal [light | normal |
demi]

InputLabels.FontAngle normal [normal | italic |
oblique]

InputLabels.Color [0 0 0] 1-by-3 RGB vector

Output Labels

Property
Default
Value Description

OutputLabel.FontSize 8 Double

OutputLabels.FontWeight normal [light | normal | demi]

OutputLabels.FontAngle normal [normal | italic |
oblique]

OutputLabels.Color [0 0 0] 1-by-3 RGB vector

14-37

14 Customizing Response Plot Properties

Input/Output Visible

Property Default Value Description

InputVisible {on} [on | off]
A cell array that specifies the
visibility of each input channel.
If the value is a scalar, scalar
expansion is applied.

OutputVisible {on} [on | off]
A cell array that specifies the
visibility of each output channel.
If the value is a scalar, scalar
expansion is applied.

Bode Plots

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

14-38

Customizing Response Plots from the Command Line

Property Default Value Description

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

FreqScale log [linear | log]

MagUnits dB [db | abs]

MagScale linear [linear | log]

PhaseUnits deg [rad | deg]

PhaseWrapping off [on | off]

MagVisible on [on | off]

PhaseVisible on [on | off]

MagLowerLimMode auto [auto | manual]
Enables a manual lower magnitude limit
specification by MagLowerLim.

MagLowerLim 0 Double
Specifies the lower magnitude limit when
MagLowerLimMode is set to manual.

14-39

14 Customizing Response Plot Properties

Property Default Value Description

PhaseMatching off [on | off]
Enables adjusting phase effects for phase
response.

PhaseMatchingFreq 0 Double

PhaseMatchingValue 0 Double

Hankel Singular Values

Property Default Value Description

Yscale linear [linear | log]

AbsTol 0 Double
See hsvd and stabsep for details.

RelTol 1*e-08 Double
See hsvd and stabsep for details.

Offset 1*e-08 Double
See hsvd and stabsep for details.

Nichols Plots

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

14-40

Customizing Response Plots from the Command Line

Property Default Value Description

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

MagLowerLimMode auto [auto | manual]

MagLowerLim 0 double

PhaseMatching off [on | off]

PhaseMatchingFreq 0 Double

PhaseMatchingValue 0 Double

14-41

14 Customizing Response Plot Properties

Nyquist Charts

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

14-42

Customizing Response Plots from the Command Line

Property Default Value Description

• 'cycles/year'

MagUnits dB [dB | abs]

PhaseUnits deg [rad | deg]

ShowFullContour on [on | off]

Pole/Zero Maps

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

14-43

14 Customizing Response Plot Properties

Property Default Value Description

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

TimeUnits seconds
Available Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

14-44

Customizing Response Plots from the Command Line

Sigma Plots

Property Default Value Description

FreqUnits rad/s
Available Options

• 'Hz'

• 'rad/s'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

14-45

14 Customizing Response Plot Properties

Property Default Value Description

• 'cycles/year'

FreqScale log [linear | log]

MagUnits dB [dB | abs]

MagScale linear [linear | log]

Time Response Plots

Property Default Value Description

Normalize off [on | off]
Normalize the y-scale of all
responses in the plot.

SettleTimeThreshold 0.02 Double
Specifies the settling time
threshold. 0.02 = 2%.

RiseTimeLimits [0.1, 0.9] 1-by-2 double
Specifies the limits used to define
the rise time. [0.1, 0.9] is 10%
to 90%.

TimeUnits seconds
Available Options

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

14-46

Customizing Response Plots from the Command Line

Property Default Value Description

• 'months'

• 'years'

Property Organization Reference

14-47

14 Customizing Response Plot Properties

Customizing Plots Inside the SISO Design Tool

In this section...

“Overview of Customizing SISO Design Tool Plots” on page 14-48

“Root Locus Property Editor” on page 14-48

“Open-Loop Bode Property Editor” on page 14-52

“Open-Loop Nichols Property Editor” on page 14-55

“Prefilter Bode Property Editor” on page 14-57

Overview of Customizing SISO Design Tool Plots
Customizing plots inside the SISO Design Tool is similar to how you
customize any response plot. The following property editors are specific to
the SISO Design Tool:

• Root Locus Property Editor

• Open-Loop Bode Property Editor

• Open-Loop Nichols Property Editor

• Prefilter Bode Property Editor

You can use each of these property editors to create the customized plots
within the SISO Design tool.

Root Locus Property Editor
There are three ways to open the Property Editor for root locus plots:

• Double-click in the root locus away from the curve

• Select Properties from the right-click menu

• Select Root Locus and then Properties from Edit in the menu bar

This figure shows the Property Editor: Root Locus window.

14-48

Customizing Plots Inside the SISO Design Tool

• “Labels Pane” on page 14-49

• “Limits Pane” on page 14-50

• “Options Pane” on page 14-51

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The root locus plot
automatically updates.

14-49

14 Customizing Response Plot Properties

Limits Pane
The SISO Design Tool specifies default values for the real and imaginary
axes ranges to make sure that all the poles and zeros in your model appear
in the root locus plot. Use the Limits pane, shown below, to override the
default settings.

To change the limits, specify the new limits in the real and imaginary axes
Limits fields. The Auto-Scale check box automatically clears once you click
in a different field. Your root locus diagram updates immediately. If you want
to reapply the default limits, select the Auto-Scale check boxes again.

The Limit Stack pane provides support for storing and retrieving custom limit
specifications. There are four buttons available:

— Add the current limits to the stack

— Retrieve the previous stack entry

14-50

Customizing Plots Inside the SISO Design Tool

— Retrieve the next stack entry

— Remove the current limits from the stack

Using these buttons, you can store and retrieve any number of saved custom
axes limits.

Options Pane
The Options pane contains settings for adding a grid and changing the plot’s
aspect ratio.

Select Show grid to display a grid on the root locus. If you have damping
ratio constraints on your root locus, selecting Display damping ratios as
% peak overshoot displays the damping ratio values along the grid lines.
This figure shows both options activated for an imported model, Gservo. If
you want to verify these settings, type

load ltiexamples

at the MATLAB prompt and import Gservo from the workspace into your
SISO Design Tool.

14-51

14 Customizing Response Plot Properties

The numbers displayed on the root locus gridlines are the damping ratios as a
percentage of the overshoot values.

If you select the Equal check box in the Aspect Ratio pane, the x and y-axes
are set to equal limit values.

Open-Loop Bode Property Editor
As is the case with the root locus Property Editor, there are three ways to
open the Bode diagram property editor:

• Double-click in the Bode magnitude or phase plot away from the curve.

14-52

Customizing Plots Inside the SISO Design Tool

• Select Properties from the right-click menu.

• Select Open-Loop Bode and then Properties from Edit in the menu bar.

This figure shows the Property Editor: Open-Loop Bode editor.

• “Labels Pane” on page 14-53

• “Limits Pane” on page 14-54

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The Bode diagram
automatically updates.

14-53

14 Customizing Response Plot Properties

Limits Pane
You can use the Limits pane to override the default limits for the frequency,
magnitude, and phase scales for your plots.

To change the limits, specify the new values in the Limits fields for frequency,
magnitude, and phase. The Auto-Scale check box automatically deactivates
once you click in a different field. The Bode diagram updates immediately.

14-54

Customizing Plots Inside the SISO Design Tool

To restore the default settings, select the Auto-Scale boxes again.

Open-Loop Nichols Property Editor
As is the case with the root locus Property Editor, there are three ways to
open the Nichols plot property editor:

• Double-click in the Nichols plot away from the curve.

• Select Properties from the right-click menu.

• Select Open-Loop Nichols and then Properties from Edit in the menu
bar.

This figure shows the Property Editor: Open-Loop Nichols editor.

• “Labels Pane” on page 14-55

• “Limits Pane” on page 14-56

Labels Pane
You can use the Label pane to specify plot titles and axis labels. To specify
a new label, type the string in the appropriate field. The Nichols plot
automatically updates.

14-55

14 Customizing Response Plot Properties

Limits Pane
You can use the Limits pane to override the default limits for the frequency,
magnitude, and phase scales for your plots.

To change the limits, specify the new values in the Limits fields for open-loop
phase and/or gain. The Auto-Scale check box automatically deactivates once
you click in a different field. The Nichols plot updates immediately.

To restore the default settings, select the Auto-Scale boxes again.

14-56

Customizing Plots Inside the SISO Design Tool

Prefilter Bode Property Editor
The Prefilter Bode Property editor is identical to the Open-Loop Bode
diagram property editor. There are three ways to open the prefilter editor:

• Double-click in the prefilter Bode magnitude or phase plot away from the
curve.

• Select Properties from the right-click menu.

• Select Prefilter Bode and then Properties from Edit in the menu bar.

See “Open-Loop Bode Property Editor” on page 14-52 for a description of the
features of this editor.

14-57

14 Customizing Response Plot Properties

14-58

15

Design Case Studies

• “Design Yaw Damper for Jet Transport” on page 15-2

• “Hard-Disk Read/Write Head Controller” on page 15-19

• “LQG Regulation: Rolling Mill Case Study” on page 15-30

• “Kalman Filtering” on page 15-49

15 Design Case Studies

Design Yaw Damper for Jet Transport

In this section...

“Overview of this Case Study” on page 15-2

“Creating the Jet Model” on page 15-2

“Computing Open-Loop Eigenvalues” on page 15-4

“Open-Loop Analysis” on page 15-5

“Root Locus Design” on page 15-8

“Washout Filter Design” on page 15-13

Overview of this Case Study
This case study demonstrates the tools for classical control design by stepping
through the design of a yaw damper for a 747® jet transport aircraft.

Creating the Jet Model
The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A=[-.0558 -.9968 .0802 .0415;
.598 -.115 -.0318 0;

-3.05 .388 -.4650 0;
0 0.0805 1 0];

B=[.00729 0;
-0.475 0.00775;
0.153 0.143;
0 0];

C=[0 1 0 0;
0 0 0 1];

D=[0 0;
0 0];

sys = ss(A,B,C,D);

15-2

Design Yaw Damper for Jet Transport

The following commands specify this state-space model as an LTI object and
attach names to the states, inputs, and outputs.

states = {'beta' 'yaw' 'roll' 'phi'};
inputs = {'rudder' 'aileron'};
outputs = {'yaw' 'bank angle'};

sys = ss(A,B,C,D,'statename',states,...
'inputname',inputs,...
'outputname',outputs);

You can display the LTI model sys by typing sys. This command produces
the following result.

a =

beta yaw roll phi

beta -0.0558 -0.9968 0.0802 0.0415

yaw 0.598 -0.115 -0.0318 0

roll -3.05 0.388 -0.465 0

phi 0 0.0805 1 0

b =

rudder aileron

beta 0.00729 0

yaw -0.475 0.00775

roll 0.153 0.143

phi 0 0

c =

beta yaw roll phi

yaw 0 1 0 0

bank angle 0 0 0 1

d =

rudder aileron

yaw 0 0

bank angle 0 0

Continuous-time model.

15-3

15 Design Case Studies

The model has two inputs and two outputs. The units are radians for beta
(sideslip angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and
roll (roll rate). The rudder and aileron deflections are in radians as well.

Computing Open-Loop Eigenvalues
Compute the open-loop eigenvalues and plot them in the s-plane.

damp(sys)

Eigenvalue Damping Freq. (rad/s)

-7.28e-003 1.00e+000 7.28e-003
-5.63e-001 1.00e+000 5.63e-001
-3.29e-002 + 9.47e-001i 3.48e-002 9.47e-001
-3.29e-002 - 9.47e-001i 3.48e-002 9.47e-001

pzmap(sys)

15-4

Design Yaw Damper for Jet Transport

This model has one pair of lightly damped poles. They correspond to what is
called the "Dutch roll mode."

Suppose you want to design a compensator that increases the damping of
these poles, so that the resulting complex poles have a damping ratio ζ > 0.35
with natural frequency ωn < 1 rad/sec. You can do this using the Control
System Toolbox analysis tools.

Open-Loop Analysis
First, perform some open-loop analysis to determine possible control
strategies. Start with the time response (you could use step or impulse here).

impulse(sys)

The impulse response confirms that the system is lightly damped. But the
time frame is much too long because the passengers and the pilot are more
concerned about the behavior during the first few seconds rather than the

15-5

15 Design Case Studies

first few minutes. Next look at the response over a smaller time frame of
20 seconds.

impulse(sys,20)

Look at the plot from aileron (input 2) to bank angle (output 2). To show only
this plot, right-click and choose I/O Selector, then click on the (2,2) entry.
The I/O Selector should look like this.

The new figure is shown below.

15-6

Design Yaw Damper for Jet Transport

The aircraft is oscillating around a nonzero bank angle. Thus, the aircraft is
turning in response to an aileron impulse. This behavior will prove important
later in this case study.

Typically, yaw dampers are designed using the yaw rate as sensed output and
the rudder as control input. Look at the corresponding frequency response.

sys11=sys('yaw','rudder') % Select I/O pair.
bode(sys11)

15-7

15 Design Case Studies

From this Bode diagram, you can see that the rudder has significant effect
around the lightly damped Dutch roll mode (that is, near ω = 1 rad/sec).

Root Locus Design
A reasonable design objective is to provide a damping ration ζ > 0.35 with
a natural frequency ωn < 1.0 rad/sec. Since the simplest compensator is a
static gain, first try to determine appropriate gain values using the root
locus technique.

% Plot the root locus for the rudder to yaw channel
rlocus(sys11)

15-8

Design Yaw Damper for Jet Transport

This is the root locus for negative feedback and shows that the system goes
unstable almost immediately. If, instead, you use positive feedback, you may
be able to keep the system stable.

rlocus(-sys11)
sgrid

15-9

15 Design Case Studies

This looks better. By using simple feedback, you can achieve a damping ratio
of ζ > 0.45. Click on the blue curve and move the data marker to track the
gain and damping values. To achieve a 0.45 damping ratio, the gain should be
about 2.85. This figure shows the data marker with similar values.

15-10

Design Yaw Damper for Jet Transport

Next, close the SISO feedback loop.

K = 2.85;
cl11 = feedback(sys11,-K); % Note: feedback assumes negative

% feedback by default

Plot the closed-loop impulse response for a duration of 20 seconds, and
compare it to the open-loop impulse response.

impulse(sys11,'b--',cl11,'r',20)

15-11

15 Design Case Studies

The closed-loop response settles quickly and does not oscillate much,
particularly when compared to the open-loop response.

Now close the loop on the full MIMO model and see how the response from
the aileron looks. The feedback loop involves input 1 and output 1 of the
plant (use feedback with index vectors selecting this input/output pair). At
the MATLAB prompt, type

cloop = feedback(sys,-K,1,1);
damp(cloop) % closed-loop poles

Eigenvalue Damping Freq. (rad/s)

-3.42e-001 1.00e+000 3.42e-001
-2.97e-001 + 6.06e-001i 4.40e-001 6.75e-001
-2.97e-001 - 6.06e-001i 4.40e-001 6.75e-001
-1.05e+000 1.00e+000 1.05e+000

Plot the MIMO impulse response.

15-12

Design Yaw Damper for Jet Transport

impulse(sys,'b--',cloop,'r',20)

The yaw rate response is now well damped, but look at the plot from aileron
(input 2) to bank angle (output 2). When you move the aileron, the system
no longer continues to bank like a normal aircraft. You have over-stabilized
the spiral mode. The spiral mode is typically a very slow mode and allows the
aircraft to bank and turn without constant aileron input. Pilots are used
to this behavior and will not like your design if it does not allow them to
fly normally. This design has moved the spiral mode so that it has a faster
frequency.

Washout Filter Design
What you need to do is make sure the spiral mode does not move further into
the left-half plane when you close the loop. One way flight control designers
have addressed this problem is to use a washout filter kH(s) where

H s
s

s
() =

+

15-13

15 Design Case Studies

The washout filter places a zero at the origin, which constrains the spiral
mode pole to remain near the origin. We choose α = 0.2 for a time constant of
five seconds and use the root locus technique to select the filter gain H. First
specify the fixed part s/(s + α) of the washout by

H = zpk(0,-0.2,1);

Connect the washout in series with the design model sys11 (relation between
input 1 and output 1) to obtain the open-loop model

oloop = H * sys11;

and draw another root locus for this open-loop model.

rlocus(-oloop)
sgrid

Create and drag a data marker around the upper curve to locate the maximum
damping, which is about ζ = 0.3.

15-14

Design Yaw Damper for Jet Transport

This figure shows a data marker at the maximum damping ratio; the gain
is approximately 2.07.

Look at the closed-loop response from rudder to yaw rate.

K = 2.07;
cl11 = feedback(oloop,-K);
impulse(cl11,20)

15-15

15 Design Case Studies

The response settles nicely but has less damping than your previous design.
Finally, you can verify that the washout filter has fixed the spiral mode
problem. First form the complete washout filter kH(s) (washout + gain).

WOF = -K * H;

Then close the loop around the first I/O pair of the MIMO model sys and
simulate the impulse response.

cloop = feedback(sys,WOF,1,1);

% Final closed-loop impulse response
impulse(sys,'b--',cloop,'r',20)

15-16

Design Yaw Damper for Jet Transport

The bank angle response (output 2) due to an aileron impulse (input 2) now
has the desired nearly constant behavior over this short time frame. To
inspect the response more closely, use the I/O Selector in the right-click menu
to select the (2,2) I/O pair.

15-17

15 Design Case Studies

Although you did not quite meet the damping specification, your design has
increased the damping of the system substantially and now allows the pilot
to fly the aircraft normally.

15-18

Hard-Disk Read/Write Head Controller

Hard-Disk Read/Write Head Controller

In this section...

“Overview of this Case Study” on page 15-19

“Creating the Read/Write Head Model” on page 15-19

“Model Discretization” on page 15-20

“Adding a Compensator Gain” on page 15-22

“Adding a Lead Network” on page 15-23

“Design Analysis” on page 15-26

Overview of this Case Study

This case study demonstrates the ability to perform classical digital control
design by going through the design of a computer hard-disk read/write head
position controller.

Creating the Read/Write Head Model
Using Newton’s law, a simple model for the read/write head is the differential
equation

15-19

15 Design Case Studies

J
d

dt
C

d
dt

K K ii
2

2

+ + =

where J is the inertia of the head assembly, C is the viscous damping
coefficient of the bearings, K is the return spring constant, Ki is the motor
torque constant, θ is the angular position of the head, and i is the input
current.

Taking the Laplace transform, the transfer function from i to θ is

H s
K

Js Cs K
i() =

+ +2

Using the values J = 0.01 kg m2, C = 0.004 Nm/(rad/sec), K = 10 Nm/rad, and
Ki = 0.05 Nm/rad, form the transfer function description of this system. At
the MATLAB prompt, type

J = .01; C = 0.004; K = 10; Ki = .05;
num = Ki;
den = [J C K];
H = tf(num,den)

These commands produce the following result.

Transfer function:
0.05

0.01 s^2 + 0.004 s + 10

Model Discretization
The task here is to design a digital controller that provides accurate
positioning of the read/write head. The design is performed in the digital
domain. First, discretize the continuous plant. Because our plant will be
equipped with a digital-to-analog converter (with a zero-order hold) connected
to its input, use c2d with the 'zoh' discretization method. Type

Ts = 0.005; % sampling period = 0.005 second
Hd = c2d(H,Ts,'zoh')
Transfer function:

15-20

Hard-Disk Read/Write Head Controller

6.233e-05 z + 6.229e-05

z^2 - 1.973 z + 0.998

Sampling time: 0.005

You can compare the Bode plots of the continuous and discretized models with

bodeplot(H,'-',Hd,'--')

To analyze the discrete system, plot its step response, type

step(Hd)

15-21

15 Design Case Studies

The system oscillates quite a bit. This is probably due to very light damping.
You can check this by computing the open-loop poles. Type

% Open-loop poles of discrete model

damp(Hd)

Eigenvalue Magnitude Equiv. Damping Equiv. Freq.

9.87e-01 + 1.57e-01i 9.99e-01 6.32e-03 3.16e+01

9.87e-01 - 1.57e-01i 9.99e-01 6.32e-03 3.16e+01

The poles have very light equivalent damping and are near the unit circle.
You need to design a compensator that increases the damping of these poles.

Adding a Compensator Gain
The simplest compensator is just a gain, so try the root locus technique to
select an appropriate feedback gain.

rlocus(Hd)

15-22

Hard-Disk Read/Write Head Controller

As shown in the root locus, the poles quickly leave the unit circle and go
unstable. You need to introduce some lead or a compensator with some zeros.

Adding a Lead Network
Try the compensator

D z
z
z b

() = +
+

with α = −0.85 and b = 0.

The corresponding open-loop model

15-23

15 Design Case Studies

is obtained by the series connection

D = zpk(0.85,0,1,Ts)
oloop = Hd * D

Now see how this compensator modifies the open-loop frequency response.

bodeplot(Hd,'--',oloop,'-')

The plant response is the dashed line and the open-loop response with the
compensator is the solid line.

15-24

Hard-Disk Read/Write Head Controller

The plot above shows that the compensator has shifted up the phase plot
(added lead) in the frequency range ω > 10 rad/sec.

Now try the root locus again with the plant and compensator as open loop.

rlocus(oloop)
zgrid

Open the Property Editor by right-clicking in the plot away from the curve.
On the Limits page, set the x- and y-axis limits from -1 to 1.01. This figure
shows the result.

This time, the poles stay within the unit circle for some time (the lines drawn
by zgrid show the damping ratios from ζ = 0 to 1 in steps of 0.1). Use a data
marker to find the point on the curve where the gain equals 4.111e+03. This
figure shows the data marker at the correct location.

15-25

15 Design Case Studies

Design Analysis
To analyze this design, form the closed-loop system and plot the closed-loop
step response.

K = 4.11e+03;
cloop = feedback(oloop,K);
step(cloop)

15-26

Hard-Disk Read/Write Head Controller

This response depends on your closed loop set point. The one shown here
is relatively fast and settles in about 0.07 seconds. Therefore, this closed
loop disk drive system has a seek time of about 0.07 seconds. This is slow by
today’s standards, but you also started with a very lightly damped system.

Now look at the robustness of your design. The most common classical
robustness criteria are the gain and phase margins. Use the function margin
to determine these margins. With output arguments, margin returns the
gain and phase margins as well as the corresponding crossover frequencies.
Without output argument, margin plots the Bode response and displays the
margins graphically.

To compute the margins, first form the unity-feedback open loop by connecting
the compensator D(z), plant model, and feedback gain k in series.

olk = K * oloop;

15-27

15 Design Case Studies

Next apply margin to this open-loop model. Type

[Gm,Pm,Wcg,Wcp] = margin(olk);
Margins = [Gm Wcg Pm Wcp]
Margins =

3.7987 296.7978 43.2031 106.2462

To obtain the gain margin in dB, type

20*log10(Gm)
ans =

11.5926

You can also display the margins graphically by typing

margin(olk)

The command produces the plot shown below.

15-28

Hard-Disk Read/Write Head Controller

This design is robust and can tolerate a 11 dB gain increase or a 40 degree
phase lag in the open-loop system without going unstable. By continuing this
design process, you may be able to find a compensator that stabilizes the
open-loop system and allows you to reduce the seek time.

15-29

15 Design Case Studies

LQG Regulation: Rolling Mill Case Study

In this section...

“Overview of this Case Study” on page 15-30

“Process and Disturbance Models” on page 15-30

“LQG Design for the x-Axis” on page 15-33

“LQG Design for the y-Axis” on page 15-40

“Cross-Coupling Between Axes” on page 15-42

“MIMO LQG Design” on page 15-45

Overview of this Case Study
This case study demonstrates the use of the LQG design tools in a process
control application. The goal is to regulate the horizontal and vertical
thickness of the beam produced by a hot steel rolling mill. This example is
adapted from [1]. The full plant model is MIMO and the example shows
the advantage of direct MIMO LQG design over separate SISO designs for
each axis. Type

milldemo

at the command line to run this demonstration interactively.

Process and Disturbance Models
The rolling mill is used to shape rectangular beams of hot metal. The desired
outgoing shape is sketched below.

15-30

LQG Regulation: Rolling Mill Case Study

This shape is impressed by two pairs of rolling cylinders (one per axis)
positioned by hydraulic actuators. The gap between the two cylinders is called
the roll gap.

The objective is to maintain the beam thickness along the x- and y-axes
within the quality assurance tolerances. Variations in output thickness can
arise from the following:

• Variations in the thickness/hardness of the incoming beam

• Eccentricity in the rolling cylinders

15-31

15 Design Case Studies

Feedback control is necessary to reduce the effect of these disturbances.
Because the roll gap cannot be measured close to the mill stand, the rolling
force is used instead for feedback.

The input thickness disturbance is modeled as a low pass filter driven by
white noise. The eccentricity disturbance is approximately periodic and its
frequency is a function of the rolling speed. A reasonable model for this
disturbance is a second-order bandpass filter driven by white noise.

This leads to the following generic model for each axis of the rolling process.

The measured rolling force variation f is a combination of the incremental
force delivered by the hydraulic actuator and of the disturbance forces due to
eccentricity and input thickness variation. Note that:

15-32

LQG Regulation: Rolling Mill Case Study

• The outputs of H(s), Fe(s), and Fi(s) are the incremental forces delivered
by each component.

• An increase in hydraulic or eccentricity force reduces the output thickness
gap δ.

• An increase in input thickness increases this gap.

The model data for each axis is summarized below.

Model Data for the x-Axis

H s
s s

F s
s

F s
s

s

x

ix

ex

()
.

()
.

()
.

= ×
+ +

=
+

= ×
+

2 4 10

72 90

10
0 05

3 10

0 1

8

2 2

4

4

2 225 6

10

2

6
s

gx

+
= −

Model Data for the y-Axis

H s
s s

F s
s

F s
s

s

y

iy

ey

()
.

()
.

()
.

= ×
+ +

= ×
+

=
+

7 8 10

71 88

2 10
0 05

10

0 1

8

2 2

4

5

2 99 9 4

0 5 10

2

6
s

gy

+
= × −

.

.

LQG Design for the x-Axis
As a first approximation, ignore the cross-coupling between the x- and y-axes
and treat each axis independently. That is, design one SISO LQG regulator

15-33

15 Design Case Studies

for each axis. The design objective is to reduce the thickness variations δx and
δy due to eccentricity and input thickness disturbances.

Start with the x-axis. First specify the model components as transfer function
objects.

% Hydraulic actuator (with input "u-x")
Hx = tf(2.4e8,[1 72 90^2],'inputname','u-x')

% Input thickness/hardness disturbance model
Fix = tf(1e4,[1 0.05],'inputn','w-ix')

% Rolling eccentricity model
Fex = tf([3e4 0],[1 0.125 6^2],'inputn','w-ex')

% Gain from force to thickness gap
gx = 1e-6;

Next build the open-loop model shown in “Process and Disturbance Models”
on page 15-30. You could use the function connect for this purpose, but it is
easier to build this model by elementary append and series connections.

% I/O map from inputs to forces f1 and f2
Px = append([ss(Hx) Fex],Fix)

% Add static gain from f1,f2 to outputs "x-gap" and "x-force"
Px = [-gx gx;1 1] * Px

% Give names to the outputs:
set(Px,'outputn',{'x-gap' 'x-force'})

Note To obtain minimal state-space realizations, always convert transfer
function models to state space before connecting them. Combining transfer
functions and then converting to state space may produce nonminimal
state-space models.

The variable Px now contains an open-loop state-space model complete with
input and output names.

15-34

LQG Regulation: Rolling Mill Case Study

Px.inputname

ans =
'u-x'
'w-ex'
'w-ix'

Px.outputname

ans =
'x-gap'
'x-force'

The second output 'x-force' is the rolling force measurement. The LQG
regulator will use this measurement to drive the hydraulic actuator and
reduce disturbance-induced thickness variations δx.

The LQG design involves two steps:

1 Design a full-state-feedback gain that minimizes an LQ performance
measure of the form

J u q ru dtx x x() = +{ }∞
∫ 2 2
0

2 Design a Kalman filter that estimates the state vector given the force
measurements 'x-force'.

The performance criterion J(ux) penalizes low and high frequencies equally.
Because low-frequency variations are of primary concern, eliminate the
high-frequency content of δx with the low-pass filter 30/(s + 30) and use the
filtered value in the LQ performance criterion.

lpf = tf(30,[1 30])

% Connect low-pass filter to first output of Px
Pxdes = append(lpf,1) * Px
set(Pxdes,'outputn',{'x-gap*' 'x-force'})

% Design the state-feedback gain using LQRY and q=1, r=1e-4

15-35

15 Design Case Studies

kx = lqry(Pxdes(1,1),1,1e-4)

Note lqry expects all inputs to be commands and all outputs to be
measurements. Here the command 'u-x' and the measurement 'x-gap*'
(filtered gap) are the first input and first output of Pxdes. Hence, use the
syntax Pxdes(1,1) to specify just the I/O relation between 'u-x' and
'x-gap*'.

Next, design the Kalman estimator with the function kalman. The process
noise

w
w

wx
ex

ix
=

⎡

⎣
⎢

⎤

⎦
⎥

has unit covariance by construction. Set the measurement noise covariance
to 1000 to limit the high frequency gain, and keep only the measured output
'x-force' for estimator design.

estx = kalman(Pxdes(2,:),eye(2),1000)

Finally, connect the state-feedback gain kx and state estimator estx to form
the LQG regulator.

Regx = lqgreg(estx,kx)

This completes the LQG design for the x−axis.

Let’s look at the regulator Bode response between 0.1 and 1000 rad/sec.

h = bodeplot(Regx,{0.1 1000})
setoptions(h,'PhaseMatching','on')

15-36

LQG Regulation: Rolling Mill Case Study

The phase response has an interesting physical interpretation. First,
consider an increase in input thickness. This low-frequency disturbance
boosts both output thickness and rolling force. Because the regulator phase
is approximately 0o at low frequencies, the feedback loop then adequately
reacts by increasing the hydraulic force to offset the thickness increase. Now
consider the effect of eccentricity. Eccentricity causes fluctuations in the roll
gap (gap between the rolling cylinders). When the roll gap is minimal, the
rolling force increases and the beam thickness diminishes. The hydraulic
force must then be reduced (negative force feedback) to restore the desired
thickness. This is exactly what the LQG regulator does as its phase drops to
-180o near the natural frequency of the eccentricity disturbance (6 rad/sec).

Next, compare the open- and closed-loop responses from disturbance to
thickness gap. Use feedback to close the loop. To help specify the feedback
connection, look at the I/O names of the plant Px and regulator Regx.

Px.inputname
ans =

'u-x'

15-37

15 Design Case Studies

'w-ex'
'w-ix'

Regx.outputname
ans =

'u-x'

Px.outputname
ans =

'x-gap'
'x-force'

Regx.inputname
ans =

'x-force'

This indicates that you must connect the first input and second output of Px
to the regulator.

clx = feedback(Px,Regx,1,2,+1) % Note: +1 for positive feedback

You are now ready to compare the open- and closed-loop Bode responses from
disturbance to thickness gap.

h = bodeplot(Px(1,2:3),'--',clx(1,2:3),'-',{0.1 100})
setoptions(h,'PhaseMatching','on')

15-38

LQG Regulation: Rolling Mill Case Study

The dashed lines show the open-loop response. Note that the peak gain
of the eccentricity-to-gap response and the low-frequency gain of the
input-thickness-to-gap response have been reduced by about 20 dB.

Finally, use lsim to simulate the open- and closed-loop time responses to
the white noise inputs wex and wix. Choose dt=0.01 as sampling period for
the simulation, and derive equivalent discrete white noise inputs for this
sampling rate.

dt = 0.01
t = 0:dt:50 % time samples

% Generate unit-covariance driving noise wx = [w-ex;w-ix].
% Equivalent discrete covariance is 1/dt
wx = sqrt(1/dt) * randn(2,length(t))

lsim(Px(1,2:3),':',clx(1,2:3),'-',wx,t)

15-39

15 Design Case Studies

Right-click on the plot that appears and select Show Input to turn off the
display of the input.

The dotted lines correspond to the open-loop response. In this simulation, the
LQG regulation reduces the peak thickness variation by a factor 4.

LQG Design for the y-Axis
The LQG design for the y-axis (regulation of the y thickness) follows the exact
same steps as for the x-axis.

% Specify model components
Hy = tf(7.8e8,[1 71 88^2],'inputn','u-y')
Fiy = tf(2e4,[1 0.05],'inputn','w-iy')
Fey = tf([1e5 0],[1 0.19 9.4^2],'inputn','w-ey')
gy = 0.5e-6 % force-to-gap gain

% Build open-loop model
Py = append([ss(Hy) Fey],Fiy)

15-40

LQG Regulation: Rolling Mill Case Study

Py = [-gy gy;1 1] * Py
set(Py,'outputn',{'y-gap' 'y-force'})

% State-feedback gain design
Pydes = append(lpf,1) * Py % Add low-freq. weigthing
set(Pydes,'outputn',{'y-gap*' 'y-force'})
ky = lqry(Pydes(1,1),1,1e-4)

% Kalman estimator design
esty = kalman(Pydes(2,:),eye(2),1e3)

% Form SISO LQG regulator for y-axis and close the loop
Regy = lqgreg(esty,ky)
cly = feedback(Py,Regy,1,2,+1)

Compare the open- and closed-loop response to the white noise input
disturbances.

dt = 0.01
t = 0:dt:50
wy = sqrt(1/dt) * randn(2,length(t))

lsim(Py(1,2:3),':',cly(1,2:3),'-',wy,t)

Right-click on the plot that appears and select Show Input to turn off the
display of the input.

15-41

15 Design Case Studies

The dotted lines correspond to the open-loop response. The simulation results
are comparable to those for the x-axis.

Cross-Coupling Between Axes
The x/y thickness regulation, is a MIMO problem. So far you have treated
each axis separately and closed one SISO loop at a time. This design is valid
as long as the two axes are fairly decoupled. Unfortunately, this rolling mill
process exhibits some degree of cross-coupling between axes. Physically, an
increase in hydraulic force along the x-axis compresses the material, which
in turn boosts the repelling force on the y-axis cylinders. The result is an
increase in y-thickness and an equivalent (relative) decrease in hydraulic
force along the y-axis.

The figure below shows the coupling.

15-42

LQG Regulation: Rolling Mill Case Study

Accordingly, the thickness gaps and rolling forces are related to the outputs

x xf, , of the x- and y-axis models by

15-43

15 Design Case Studies

x

y

x

x

yx x

xy y

yx

xy

f

f

g g

g g

g

g

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
−

−

⎡

⎣

⎢
⎢
⎢

1 0 0

0 1 0

0 0 1

0 0 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

cross-coupling matrix

x

y

x

y

f

f ⎦⎦

⎥
⎥
⎥
⎥
⎥

Let’s see how the previous "decoupled" LQG design fares when cross-coupling
is taken into account. To build the two-axes model, shown above, append the
models Px and Py for the x- and y-axes.

P = append(Px,Py)

For convenience, reorder the inputs and outputs so that the commands and
thickness gaps appear first.

P = P([1 3 2 4],[1 4 2 3 5 6])
P.outputname

ans =
'x-gap'
'y-gap'
'x-force'
'y-force'

Finally, place the cross-coupling matrix in series with the outputs.

gxy = 0.1; gyx = 0.4;
CCmat = [eye(2) [0 gyx*gx;gxy*gy 0] ; zeros(2) [1 -gyx;-gxy 1]]
Pc = CCmat * P
Pc.outputname = P.outputname

To simulate the closed-loop response, also form the closed-loop model by

feedin = 1:2 % first two inputs of Pc are the commands
feedout = 3:4 % last two outputs of Pc are the measurements
cl = feedback(Pc,append(Regx,Regy),feedin,feedout,+1)

You are now ready to simulate the open- and closed-loop responses to the
driving white noises wx (for the x-axis) and wy (for the y-axis).

15-44

LQG Regulation: Rolling Mill Case Study

wxy = [wx ; wy]
lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

Right-click on the plot that appears and select Show Input to turn off the
display of the input.

The response reveals a severe deterioration in regulation performance along
the x-axis (the peak thickness variation is about four times larger than in the
simulation without cross-coupling). Hence, designing for one loop at a time is
inadequate for this level of cross-coupling, and you must perform a joint-axis
MIMO design to correctly handle coupling effects.

MIMO LQG Design
Start with the complete two-axis state-panespace model Pc derived in
“Cross-Coupling Between Axes” on page 15-42. The model inputs and outputs
are

Pc.inputname

15-45

15 Design Case Studies

ans =
'u-x'
'u-y'
'w-ex'
'w-ix'
'w_ey'
'w_iy'

P.outputname

ans =
'x-gap'
'y-gap'
'x-force'
'y-force'

As earlier, add low-pass filters in series with the 'x-gap' and 'y-gap'
outputs to penalize only low-frequency thickness variations.

Pdes = append(lpf,lpf,eye(2)) * Pc
Pdes.outputn = Pc.outputn

Next, design the LQ gain and state estimator as before (there are now two
commands and two measurements).

k = lqry(Pdes(1:2,1:2),eye(2),1e-4*eye(2)) % LQ gain
est = kalman(Pdes(3:4,:),eye(4),1e3*eye(2)) % Kalman estimator

RegMIMO = lqgreg(est,k) % form MIMO LQG regulator

The resulting LQG regulator RegMIMO has two inputs and two outputs.

RegMIMO.inputname

ans =
'x-force'
'y-force'

RegMIMO.outputname

15-46

LQG Regulation: Rolling Mill Case Study

ans =
'u-x'
'u-y'

Plot its singular value response (principal gains).

sigma(RegMIMO)

Next, plot the open- and closed-loop time responses to the white noise inputs
(using the MIMO LQG regulator for feedback).

% Form the closed-loop model
cl = feedback(Pc,RegMIMO,1:2,3:4,+1);

% Simulate with lsim using same noise inputs
lsim(Pc(1:2,3:6),':',cl(1:2,3:6),'-',wxy,t)

15-47

15 Design Case Studies

Right-click on the plot that appears and select Show Input to turn off the
display of the input.

The MIMO design is a clear improvement over the separate SISO designs for
each axis. In particular, the level of x/y thickness variation is now comparable
to that obtained in the decoupled case. This example illustrates the benefits
of direct MIMO design for multivariable systems.

15-48

Kalman Filtering

Kalman Filtering

In this section...

“Overview of this Case Study” on page 15-49

“Discrete Kalman Filter” on page 15-50

“Steady-State Design” on page 15-51

“Time-Varying Kalman Filter” on page 15-57

“Time-Varying Design” on page 15-58

“References” on page 15-62

Overview of this Case Study
This final case study illustrates Kalman filter design and simulation. Both
steady-state and time-varying Kalman filters are considered.

Consider the discrete plant

x n Ax n B u n w n

y n Cx n

+[] = [] + [] + []
[] = []
1 ()

with additive Gaussian noise w[n] on the input u[n] and data

A = [1.1269 -0.4940 0.1129
1.0000 0 0

0 1.0000 0];

B = [-0.3832
0.5919
0.5191];

C = [1 0 0];

Our goal is to design a Kalman filter that estimates the output y[n] given the
inputs u[n] and the noisy output measurements

15-49

15 Design Case Studies

y n Cx n v nv [] = [] + []

where v[n] is some Gaussian white noise.

Discrete Kalman Filter
The equations of the steady-state Kalman filter for this problem are given as
follows.

Measurement update

ˆ | ˆ | (ˆ |)x n n x n n M y n Cx n nv[] = −[] + [] − −[]1 1

Time update

ˆ | ˆ |x n n Ax n n Bu n+[] = [] + []1

In these equations:

• ˆ |x n n −[]1 is the estimate of x[n] given past measurements up to yv[n − 1]

• ˆ |x n n[] is the updated estimate based on the last measurement yv[n]

Given the current estimate ˆ |x n n[] , the time update predicts the state value
at the next sample n + 1 (one-step-ahead predictor). The measurement update
then adjusts this prediction based on the new measurement yv[n + 1]. The
correction term is a function of the innovation, that is, the discrepancy.

y n Cx n nv +[] − +⎡⎣ ⎤⎦1 1ˆ

between the measured and predicted values of y[n + 1]. The innovation gain
M is chosen to minimize the steady-state covariance of the estimation error
given the noise covariances

E w n w n Q E v n v n R N E w n v nT T T[] []() = [] []() = = [] []() = 0

15-50

Kalman Filtering

You can combine the time and measurement update equations into one
state-space model (the Kalman filter).

ˆ ˆ

ˆ

x n n A I MC x n n B AM
u n
y n

y n n

v
+⎡⎣ ⎤⎦ = −() −⎡⎣ ⎤⎦ + [] []

[]
⎡

⎣
⎢

⎤

⎦
⎥

⎡⎣ ⎤⎦ =

1 1

CC I MC x n n CMy nv−() −⎡⎣ ⎤⎦ + []ˆ 1

This filter generates an optimal estimate ˆ |y n n[] of y[n]. Note that the filter
state is ˆ |x n n −[]1 .

Steady-State Design
You can design the steady-state Kalman filter described above with the
function kalman. First specify the plant model with the process noise.

x n Ax n Bu n Bw n
y n Cx n
+[] = [] + [] + []
[] = []
1 (

(
state equation)
measuremment equation)

This is done by

% Note: set sample time to -1 to mark model as discrete
Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},...

'outputname','y');

Assuming that Q = R = 1, you can now design the discrete Kalman filter by

Q = 1; R = 1;
[kalmf,L,P,M] = kalman(Plant,Q,R);

This returns a state-space model kalmf of the filter as well as the innovation
gain

M

M =

0.3798

15-51

15 Design Case Studies

0.0817
-0.2570

The inputs of kalmf are u and yv, and its outputs are the plant output and

state estimates y y n ne = []ˆ | and ˆ |x n n[] .

Because you are interested in the output estimate ye, keep only the first
output of kalmf. Type

kalmf = kalmf(1,:);
kalmf
a =

x1_e x2_e x3_e
x1_e 0.7683 -0.494 0.1129
x2_e 0.6202 0 0
x3_e -0.08173 1 0

b =
u y

x1_e -0.3832 0.3586
x2_e 0.5919 0.3798
x3_e 0.5191 0.08173

c =
x1_e x2_e x3_e

y_e 0.6202 0 0

d =
u y

y_e 0 0.3798

Input groups:
Name Channels

15-52

Kalman Filtering

KnownInput 1
Measurement 2

Output groups:
Name Channels

OutputEstimate 1

Sampling time: unspecified
Discrete-time model.

To see how the filter works, generate some input data and random noise and
compare the filtered response ye with the true response y. You can either
generate each response separately, or generate both together. To simulate
each response separately, use lsim with the plant alone first, and then with
the plant and filter hooked up together. The joint simulation alternative
is detailed next.

The block diagram below shows how to generate both true and filtered outputs.

You can construct a state-space model of this block diagram with the functions
parallel and feedback. First build a complete plant model with u, w, v as
inputs y and yv (measurements) as outputs.

a = A;
b = [B B 0*B];
c = [C;C];
d = [0 0 0;0 0 1];
P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},...
'outputname',{'y' 'yv'});

15-53

15 Design Case Studies

Then use parallel to form the following parallel connection.

sys = parallel(P,kalmf,1,1,[],[])

Finally, close the sensor loop by connecting the plant output yv to the filter
input yv with positive feedback.

% Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)
% Delete yv from I/O list
SimModel = SimModel([1 3],[1 2 3])

The resulting simulation model has w, v, u as inputs and y, ye as outputs.

SimModel.inputname

ans =
'w'
'v'
'u'

SimModel.outputname

ans =
'y'
'y_e'

15-54

Kalman Filtering

You are now ready to simulate the filter behavior. Generate a sinusoidal
input u and process and measurement noise vectors w and v.

t = [0:100]';
u = sin(t/5);

n = length(t)
randn('seed',0)
w = sqrt(Q)*randn(n,1);
v = sqrt(R)*randn(n,1);

Now simulate with lsim.

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,1); % true response
ye = out(:,2); % filtered response
yv = y + v; % measured response

and compare the true and filtered responses graphically.

subplot(211), plot(t,y,'--',t,ye,'-'),
xlabel('No. of samples'), ylabel('Output')
title('Kalman filter response')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),
xlabel('No. of samples'), ylabel('Error')

15-55

15 Design Case Studies

The first plot shows the true response y (dashed line) and the filtered output
ye (solid line). The second plot compares the measurement error (dash-dot)
with the estimation error (solid). This plot shows that the noise level has been
significantly reduced. This is confirmed by the following error covariance
computations.

MeasErr = y-yv;
MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);
EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

The error covariance before filtering (measurement error) is

MeasErrCov

MeasErrCov =
1.1138

while the error covariance after filtering (estimation error) is only

15-56

Kalman Filtering

EstErrCov

EstErrCov =
0.2722

Time-Varying Kalman Filter
The time-varying Kalman filter is a generalization of the steady-state filter
for time-varying systems or LTI systems with nonstationary noise covariance.
Given the plant state and measurement equations

x n Ax n Bu n Gw n

y n Cx n v nv

+[] = [] + [] + []
[] = [] + []
1

the time-varying Kalman filter is given by the recursions

Measurement update

ˆ | ˆ | (ˆ |)

| (

x n n x n n M n y n Cx n n

M n P n n C R n

v
T

[] = −[] + [] [] − −[]
[] = −[]

1 1

1 [[] + −[]
[] = − [] −[]

−CP n n C

P n n I M n C P n n

T|)

| () |

1

1

1

Time update

ˆ | ˆ |

| |

x n n Ax n n Bu n

P n n AP n n A GQ n GT T

+[] = [] + []
+[] = [] + []
1

1

with ˆ |x n n −[]1 and ˆ |x n n[] as defined in “Discrete Kalman Filter” on page
15-50, and in the following.

15-57

15 Design Case Studies

Q n E w n w n

R n E v n v n

P n n E x n x n n x n

T

T

[] = [] []
[] = [] []
[] = [] − []{ }

()

()

| (| [[] − []{ }
−[] = [] − −[]{ } [] − −[]{ }

x n n

P n n E x n x n n x n x n n

T

T

|)

| (| |)1 1 1

For simplicity, we have dropped the subscripts indicating the time dependence
of the state-space matrices.

Given initial conditions x[1|0] and P[1|0], you can iterate these equations
to perform the filtering. Note that you must update both the state estimates

x n|.[] and error covariance matrices P n|.[] at each time sample.

Time-Varying Design
Although the Control System Toolbox software does not offer specific
commands to perform time-varying Kalman filtering, it is easy to implement
the filter recursions in the MATLAB environment. This section shows how to
do this for the stationary plant considered above.

First generate noisy output measurements

% Use process noise w and measurement noise v generated above
sys = ss(A,B,C,0,-1);
y = lsim(sys,u+w); % w = process noise
yv = y + v; % v = measurement noise

Given the initial conditions

x P BQBT1 0 0 1 0| , |[] = [] =

you can implement the time-varying filter with the following for loop.

P = B*Q*B'; % Initial error covariance
x = zeros(3,1); % Initial condition on the state
ye = zeros(length(t),1);
ycov = zeros(length(t),1);

15-58

Kalman Filtering

for i=1:length(t)
% Measurement update
Mn = P*C'/(C*P*C'+R);
x = x + Mn*(yv(i)-C*x); % x[n|n]
P = (eye(3)-Mn*C)*P; % P[n|n]

ye(i) = C*x;
errcov(i) = C*P*C';

% Time update
x = A*x + B*u(i); % x[n+1|n]
P = A*P*A' + B*Q*B'; % P[n+1|n]

end

You can now compare the true and estimated output graphically.

subplot(211), plot(t,y,'--',t,ye,'-')
title('Time-varying Kalman filter response')
xlabel('No. of samples'), ylabel('Output')
subplot(212), plot(t,y-yv,'-.',t,y-ye,'-')
xlabel('No. of samples'), ylabel('Output')

15-59

15 Design Case Studies

The first plot shows the true response y (dashed line) and the filtered response
ye (solid line). The second plot compares the measurement error (dash-dot)
with the estimation error (solid).

The time-varying filter also estimates the covariance errcov of the estimation
error y − ye at each sample. Plot it to see if your filter reached steady state (as
you expect with stationary input noise).

subplot(211)
plot(t,errcov), ylabel('Error covar')

15-60

Kalman Filtering

From this covariance plot, you can see that the output covariance did indeed
reach a steady state in about five samples. From then on, your time-varying
filter has the same performance as the steady-state version.

Compare with the estimation error covariance derived from the experimental
data. Type

EstErr = y-ye;
EstErrCov = sum(EstErr.*EstErr)/length(EstErr)
EstErrCov =

0.2718

This value is smaller than the theoretical value errcov and close to the value
obtained for the steady-state design.

Finally, note that the final value M[n] and the steady-state value M of the
innovation gain matrix coincide.

Mn, M

15-61

15 Design Case Studies

Mn =
0.3798
0.0817

-0.2570

M =
0.3798
0.0817

-0.2570

References

[1] [Grimble, M.J., Robust Industrial Control: Optimal Design Approach for
Polynomial Systems, Prentice Hall, 1994, p. 261 and pp. 443-456.

15-62

16

Reliable Computations

16 Reliable Computations

Scaling State-Space Models

In this section...

“Why Scaling Is Important” on page 16-2

“When to Scale Your Model” on page 16-2

“Manually Scaling Your Model” on page 16-3

Why Scaling Is Important
When working with state-space models, proper scaling is important for
accurate computations. A state-space model is well scaled when the following
conditions exist:

• The entries of the A, B, and C matrices are homogenous in magnitude.

• The model characteristics are insensitive to small perturbations in A, B,
and C (in comparison to their norms).

Working with poorly scaled models can cause your model a severe loss of
accuracy and puzzling results. An example of a poorly scaled model is a
dynamic system with two states in the state vector that have units of light
years and millimeters. Such disparate units may introduce both very large
and very small entries into the A matrix. Over the course of computations,
this mix of small and large entries in the matrix could destroy important
characteristics of the model and lead to incorrect results.

For more information on the harmful affects of a poorly scaled model, see
Scaling Models to Maximize Accuracy.

When to Scale Your Model
You can avoid scaling issues altogether by carefully selecting units to reduce
the spread between small and large coefficients.

In general, you do not have to perform your own scaling when using the
Control System Toolbox software. The algorithms automatically scale your
model to prevent loss of accuracy. The automated scaling chooses a frequency
range to maximize accuracy based on the dominant dynamics of the model.

16-2

Scaling State-Space Models

In most cases, automated scaling provides high accuracy without your
intervention. For some models with dynamics spanning a wide frequency
range, however, it is impossible to achieve good accuracy at all frequencies
and some tradeoff of accuracy in different frequency bands is necessary. In
such cases, a warning alerts you of potential inaccuracies. If you receive
this warning, evaluate the tradeoffs and consider manually adjusting the
frequency interval where you most need high accuracy. For information on
how to manually scale your model, see “Manually Scaling Your Model” on
page 16-3.

Note For models with satisfactory scaling, you can bypass automated scaling
in the Control System Toolbox software. To do so, set the Scaled property
of your state-space model to 1 (true). For information on how to set this
property, see the set reference page.

Manually Scaling Your Model
If automatic scaling produces a warning, you can use the prescale command
to manually scale your model and adjust the frequency interval where you
most need high accuracy.

The prescale command includes a Scaling Tool GUI, which you can use to
visualize accuracy tradeoffs and to adjust the frequency interval where this
accuracy is maximized.

To scale your model using the Scaling Tool GUI, you perform the following
steps:

• “Opening the Scaling Tool GUI” on page 16-4

• “Specifying the Frequency Axis Limits in the Scaling Tool GUI” on page
16-5

• “Specifying the Frequency Band for Maximum Accuracy in the Scaling
Tool GUI” on page 16-6

• “Saving the Scaling in the Scaling Tool GUI” on page 16-6

For an example of using the Scaling Tool GUI on a real model, see Scaling
Models to Maximize Accuracy.

16-3

16 Reliable Computations

For more information about scaling models from the command line, see the
prescale reference page.

Opening the Scaling Tool GUI
To open the Scaling Tool GUI for a state-space model named sys, type

prescale(sys)

The Scaling Tool GUI resembles one shown in the following figure.

The Scaling Tool GUI contains the following plots:

• The Frequency Response Gain plot helps you determine the frequency
band over which you want to maximize scaling.

16-4

Scaling State-Space Models

For SISO systems, this plot shows the gain of your model. For MIMO
systems, the plot shows the principle gain (largest singular value) of your
model.

• The Frequency Response Accuracy plot allows you to view the accuracy
tradeoffs for your model when maximizing accuracy in a particular
frequency bands.

This plot shows the following information:

- Relative accuracy of the response of the original unscaled model in red

- Relative accuracy of the response of the scaled model in blue

- Best achievable accuracy when using independent scaling at each
frequency in brown

When you compute some model characteristics, such as the frequency
response or the system zeros, the software produces the exact answer for
some perturbation of the model you specified. The relative accuracy is a
measure of the worst-case relative gap between the frequency response of
the original and perturbed models. The perturbation accounts for rounding
errors during calculation. Any relative accuracy value greater than 1
implies poor accuracy.

Tip If the blue Scaled curve is close to the brown Pointwise Optimal curve
in a particular frequency band, you already have the best possible accuracy
in that frequency band.

Specifying the Frequency Axis Limits in the Scaling Tool GUI
You can change the limits of the plot axis to view a particular frequency band
of interest in the Scaling Tool GUI. To view a particular frequency band,
specify the band in the Show response in the frequency band fields.

This action updates the frequency axis of the Scaling tool to show the specified
frequency band.

Tip To return to the default display, select the Auto check box.

16-5

16 Reliable Computations

Specifying the Frequency Band for Maximum Accuracy in the
Scaling Tool GUI
To adjust the frequency band where you want maximum accuracy, set a new
frequency band in theMaximize accuracy in the frequency band fields.
You can visualize accuracy tradeoffs by trying out different frequency bands
and viewing the resulting relative accuracy across the frequency band of
interest.

Note You can use the Frequency Response Gain plot, which plots the
gain of your model, to view the dynamics in your model to help determine the
frequency band to maximize accuracy.

Each time you specify a new frequency band, the Frequency Response
Accuracy plot updates with the result of the new scaling. Compare the
Scaled curve (blue) to the Pointwise Optimal curve (brown) to determine
where the new scaling is nearly optimal and where you need more accuracy.

Tip To return to the default scaling, select the Auto check box.

Saving the Scaling in the Scaling Tool GUI
When you find a good scaling for your model, save the scaled model as follows:

1 Click Save Scaling.

This action opens the Save to Workspace dialog box.

2 In the Save to Workspace dialog box, verify that any of the following items
you want to save are selected, and specify variable names for these items.

16-6

Scaling State-Space Models

• Scaled model

• Scaling information, including:

– Scaling factors

– Frequencies used to test accuracy

– Relative accuracy at each test frequency
For details about the scaling information, see the prescale reference
page.

3 Click OK.

This action sets the State-Space (@ss) object Scaled property of your model
to true. When you set this property to True, the Control System Toolbox
algorithms skip the automated scaling of the model.

16-7

16 Reliable Computations

16-8

Using the SISO Design Tool and
the LTI Viewer

• Chapter 17, “SISO Design Tool”

• Chapter 18, “LTI Viewer”

17

SISO Design Tool

• “SISO Design Tool Overview” on page 17-2

• “Opening the SISO Design Tool” on page 17-4

• “Using the SISO Design Task Node” on page 17-5

• “Using the SISO Design Task in the Controls & Estimation Tools Manager”
on page 17-12

• “SISO Design Task Graphical Tuning Window” on page 17-43

• “Using the Graphical Tuning Window Menu Bar” on page 17-45

• “Using the Graphical Tuning Window Toolbar” on page 17-57

• “Using the Right-Click Menus in the Graphical Tuning Window” on page
17-58

• “LTI Viewer for SISO Design Task Design Requirements” on page 17-80

17 SISO Design Tool

SISO Design Tool Overview
The SISO Design Tool is a graphical-user interface (GUI) to design
compensators.

The SISO Design Tool has the following components:

• The SISO Design Task Node in the Control and Estimation Tools Manager,
a user interface (UI) that facilitates the design of compensators for
single-input, single-output feedback loops through a series of interactive
panes.

• The Graphical Tuning Window, a graphical user interface (GUI) for
displaying and manipulating the Bode, root locus, and Nichols plots for the
controller currently being designed. This window is titled SISO Design
for Design Name. The Graphical Tuning Window by default displays the
root locus and Bode diagrams for your imported systems. The two are
dynamically linked; for example, if you change the gain in the root locus, it
immediately affects the Bode diagrams as well.

• The SISO Design Task-associated LTI Viewer.

• A tool that automatically generates compensators using PID, internal
model control (IMC), or linear-quadratic-Gaussian (LQG) methods.

• Optimization-based tuning methods that automatically tune the system
to satisfy design requirements (available if you have Simulink Design
Optimization software installed).

For more information about SISO Design Tool menus and options, see:

• “Opening the SISO Design Tool” on page 17-4

• “Using the SISO Design Task Node” on page 17-5

• “Using the SISO Design Task in the Controls & Estimation Tools Manager”
on page 17-12

• “SISO Design Task Graphical Tuning Window” on page 17-43

• “Using the Graphical Tuning Window Menu Bar” on page 17-45

• “Using the Graphical Tuning Window Toolbar” on page 17-57

17-2

SISO Design Tool Overview

• “Using the Right-Click Menus in the Graphical Tuning Window” on page
17-58

• “LTI Viewer for SISO Design Task Design Requirements” on page 17-80

17-3

17 SISO Design Tool

Opening the SISO Design Tool
To open the SISO Design Task node in the Control and Estimation Tools
Manager and the Graphical Tuning Window, type

sisotool

Load the Gservo model that you want to control in the MATLAB workspace
by typing

load ltiexamples

In the Architecture tab of the Control and Estimation Tools Manager GUI,
click System Data to import the model into the SISO Design Tool.

Tip You can import LTI models and arrays of LTI models for the plant G and
sensor H into the SISO Design Tool. For more information, see “Importing
Models into the SISO Design Tool” in the Getting Started Guide.

Alternatively, to open the SISO Design Tool with the Gservo system, type

sisotool(Gservo)

17-4

Using the SISO Design Task Node

Using the SISO Design Task Node

In this section...

“The SISO Design Task Node” on page 17-5

“SISO Design Task Node Menu Bar” on page 17-5

The SISO Design Task Node
The following figure shows the SISO Design Task node in the Control and
Estimation Tools Manager.

SISO Design Task Node on the Control and Estimation Tools Manager

SISO Design Task Node Menu Bar
The SISO Design Task node menu bar contains the following menus:

17-5

17 SISO Design Tool

File Menu Options

Load
Save
Export
Close

• Load

To load a saved SISO Design Tool project, select Load from the File menu.
This opens the Load Projects window.

Projects are saved as MAT-files. Select the project you want to load from
the list, or click ... to browse for projects you can select from, and click OK.

• Save

You can exit the MATLAB technical computing environment and later
restore the SISO Design Tool to the state you left it in by saving the project.
Select Save from the File menu. This opens the Save Projects window.

17-6

Using the SISO Design Task Node

To save a project, specify a file name and click OK. The current state and
configuration of your SISO Design Tool are saved as a MAT-file. To load a
saved project, select Load from the File menu (see previous bullet).

• Export

Selecting Export from the File menu opens the SISO Tool Export window.

17-7

17 SISO Design Tool

You can perform the following tasks in this window:

- Export models to the MATLAB workspace or to a disk. The exported
models are:

• LTI objects if the plant and sensor are LTI models

• Arrays of LTI objects if the plant or sensor are arrays of LTI models

- Rename models when exporting

- Save variations on models, including open and closed loop models,
sensitivity transfer functions, and state-space representations

To export models to the MATLAB workspace, follow these steps:

1 Select the model you want to export from the Component list by left-clicking
the model name. To select more than one model, hold down the Shift key if
they are adjacent on the list. If you want to save nonadjacent models, hold
down the Ctrl key while selecting the models.

2 For each model you want to save, specify a name in the model’s cell in
the Export As list. A default name exists if you do not want to assign a
new name.

3 Click Export to Workspace.

17-8

Using the SISO Design Task Node

If you want to save your models as a MAT-file, follow steps 1 and 2 and click
Export to Disk, which opens this window.

Choose where you want to save the file in the Save in field and specify the
name of the MAT-file in the File name field. Click Save to save the file.

• Close

Use Close to close the SISO Design Tool. This closes all components of
the SISO Design Tool.

Edit Menu Options

Undo
Redo
SISO Tool Preferences

• Undo

Use Undo to go back in design steps. Note that the Undo menu changes
when the task you have just performed changes. For example, if you change
the compensator gain, the Undo menu item now reads Undo Edit Gain.

• Redo

Use Redo to go forward in the design steps. You can only use Redo if
you have previously used Undo. Like the Undo menu, the Redo menu
changes when the task you have just performed changes. For example, if
you change the compensator gain, and then select Undo Edit Gain, the
Redo menu item becomes Redo Edit Gain.

17-9

17 SISO Design Tool

• SISO Tool Preferences

Select SISO Tool Preferences from the Edit menu to open the SISO
Tool Preferences dialog box.

You can use this window to do the following:

- Change units

- Add plot grids, change font styles for titles, labels, etc., and change axes
foreground colors

- Change the compensator format

- Show or hide system poles and zeros in Bode diagrams

For a discussion of this window’s features, see Setting Toolbox Preferences"
online in the Control System Toolbox documentation.

Help
Selecting About the Control and Estimation Tools Manager in the
Help menu opens a window with the version number and a copyright notice
for this product.

Buttons Available from Any Pane

• “Showing the Control Architecture” on page 17-11

17-10

Using the SISO Design Task Node

• “Store Design” on page 17-11

Showing the Control Architecture. Click Show Architecture to open a
window that displays the block diagram for your model. For example,

Below the block diagram is a table that shows the default names for each part
of the block diagram and the assigned name, if you have one.

Store Design. Click Store Design to save your design to your SISO Design
Task node. Click onDesign under the node to see a snapshot summary of your
design. Click on the Design History node to show a list of all stored designs.

17-11

17 SISO Design Tool

Using the SISO Design Task in the Controls & Estimation
Tools Manager

In this section...

“Architecture” on page 17-12

“Compensator Editor” on page 17-19

“Graphical Tuning” on page 17-20

“Analysis Plots” on page 17-24

“Automated Tuning” on page 17-25

Architecture
Use the Architecture tab for:

• “Block Diagram Structure Modifications” on page 17-13

• “Loop Configuration” on page 17-15

• “Model Import” on page 17-15

• “Sample Times for Continuous/Discrete Conversions” on page 17-17

• “Multimodel Configuration” on page 17-18

17-12

Using the SISO Design Task in the Controls & Estimation Tools Manager

Architecture Pane on the SISO Design Task Node

Block Diagram Structure Modifications
Click Control Architecture to change the feedback structure and label
signals and blocks. The following pane appears:

������
������

�����������

17-13

17 SISO Design Tool

Select an architecture from the list of block configurations. These include
compensator in the forward path, compensator in the feedback path,
feedforward controller, and various multi-loop configurations. The window
automatically updates to show the selected configuration.

Each configuration has associated Signs and Blocks and Signals panes. This
figure shows the Signs pane.

����������������
������������������
����������������
������������������

The Blocks and Signals pane displays the generic identifier, for example F for
the prefilter block, and a default name.

 �������������
������������

!�����
�����"���#
�������������
�������������

17-14

Using the SISO Design Task in the Controls & Estimation Tools Manager

Loop Configuration
Click Loop Configuration to configure loops for multi-loop design by
opening signals to remove the effects of other feedback loops.

To specify openings for a given open loop, select the loop in the combo box.
Click Highlight Feedback Loop to see the effects of the selected openings.

For an example of how to use this window in design, see Multi-Loop
Compensator Design.

Model Import
Click System Data on the Architecture pane to import models into your
system. This opens the System Data dialog box, shown below.

17-15

17 SISO Design Tool

You can import models for the plant (G), compensator (C), prefilter (F), and/or
sensor (H). G or H or both are LTI models or row or column arrays of LTI
models. If both G and H are arrays, their sizes must match.

To import a model:

1 Select a system in the System column and click Browse. The Model
Import dialog box opens, as shown in the next figure.

17-16

Using the SISO Design Task in the Controls & Estimation Tools Manager

2 Select a model from the Available Models list. You can import models
from:

• The MATLAB workspace

• A MAT-file

3 Click Import, then click Close. You can now see the model loaded into the
system selected in the System Data dialog.

4 Click OK. The Graphical Tuning window is updated with the model you
loaded.

Alternatively, you can import by entering a valid expression or variable
(double, LTI object or row or column array of LTI objects) in the Data column
in the System Data window.

For more information, see “Importing Models into the SISO Design Tool”.

Sample Times for Continuous/Discrete Conversions
Click Sample Time Conversion to convert the sample time of the system or
switch between different sample times to design different compensators.

17-17

17 SISO Design Tool

Choose from Zero-Order Hold, First-Order Hold, Impulse Variant, Tustin,
Tustin w/Prewarping, and Matched Pole-Zero.

For a full description, see “Continuous/Discrete Conversions Using the
Sample Time Conversion Dialog Box” on page 17-51.

Multimodel Configuration
TheMultimodel Configuration button is enabled only when you import or
open the SISO Design Tool GUI with a row or column arrays of LTI models
for the plant G or sensor H or both. The LTI arrays model system variations
in the plant and sensor. If both G and H are arrays, their sizes must match.

Click Multimodel Configuration to specify the nominal model and
frequency grid for multimodel computations. This action opens the
Multimodel Configuration Dialog window, as shown in the next figure.

17-18

Using the SISO Design Task in the Controls & Estimation Tools Manager

For more information, see “Control Design Analysis of Multiple Models”.

Compensator Editor
Use the Compensator Editor for adding or editing gains, poles, and zeros.

17-19

17 SISO Design Tool

Compensator Editor Pane on the SISO Design Task Node

1 Enter the compensator gain in the text box in the top part of the pane.

2 Add or remove compensator poles and zeros by right-clicking in the
Dynamics table.

3 Adjust pole and zero settings by entering values directly in the Edit
Selected Dynamics group box.

Graphical Tuning
Use the Graphical Tuning pane for

• “Configuring Design Plots for the Graphical Tuning Window” on page 17-21

• “Selecting New Loops to Tune” on page 17-23

• “Refocusing on the Graphical Tuning Window” on page 17-23

17-20

Using the SISO Design Task in the Controls & Estimation Tools Manager

Graphical Tuning Pane on the SISO Design Task Node

Configuring Design Plots for the Graphical Tuning Window
Click the Graphical Tuning tab to configure design plots displayed in the
Graphical Tuning Window.

17-21

17 SISO Design Tool

In the Graphical Tuning window, use design plots to graphically manipulate
system response. These design plots are dynamically linked to the SISO
Design Task. When you change the dynamics of your compensator in either
the SISO Design Task or the Graphical Tuning window, the design updates in
both places.

For open-loop responses, the available plot types are:

• Root locus

• Nichols

• Bode

For closed-loop responses, the available plot type is Bode.

17-22

Using the SISO Design Task in the Controls & Estimation Tools Manager

For row or column arrays of LTI models, the design plots show the individual
response of all models in the array by default. For more information, see
“Using the Graphical Tuning Window” in the Getting Started Guide.

Selecting New Loops to Tune
Click Select New Open/Closed Loops to Tune to open a window for
specifying new loops to tune.

Use the pull down menus to select the desired closed loop to tune by specifying
the input, output, and blocks for tuning. Using the dialog box, you can select
additional closed loops to tune.

Any loop you specify is displayed in the Summary of Available Loops to
Tune in the Graphical Tuning pane. The list is also available in the Design
plots configuration table of the same pane. You can use the latter for
configuring design plots.

Refocusing on the Graphical Tuning Window
Click Show Design Plot to change the focus to the Graphical Tuning window.

17-23

17 SISO Design Tool

Analysis Plots
Use the Analysis Plots pane for

• “Customizing Loop Responses” on page 17-24

• “Adding New Response Plots” on page 17-25

• “Opening or Changing the Focus to the LTI Viewer” on page 17-25

Analysis Plots Pane on the SISO Design Task Node

Customizing Loop Responses
The following sections describe the main components of the Analysis Plots
pane.

Analysis Plots. You can have up to six plots in one LTI Viewer. To add a
plot, start by selecting "Plot 1" from the list of plots. Then select a new plot
type from the pull down menu. You can choose any of the plots available in
the LTI Viewer. Select "None" to remove a plot.

17-24

Using the SISO Design Task in the Controls & Estimation Tools Manager

Contents of plots. Once you have selected a plot type, you can include
several open- and closed-loop transfer function responses for display. You can
plot open-loop responses for each of the components of your system, including
your compensator (C), plant (G), prefilter (F), or sensor (H). In addition,
various closed loop and sensitivity response plots are available.

For row or column arrays of LTI models, the analysis plots show the response
of the nominal model only by default. For more information, see “Analysis
Plots for Loop Responses” in the Getting Started Guide.

Adding New Response Plots
Click Add Responses to open a window with three drop-down menus for
selecting open and closed loop responses for various input and output nodes in
the control architecture block diagram. This allows you to select additional
responses for viewing. The Response table updates automatically to include
the selected response.

Opening or Changing the Focus to the LTI Viewer
Click Show Analysis Plot to open a new LTI Viewer for SISO Design with
the response plots that you selected. All the plots open in one instance of
the LTI Viewer.

Automated Tuning
Use the Automated Tuning pane to select a method for automatic tuning
of your compensator design. Automated tuning methods help you design an
initial compensator for a SISO loop that satisfies your design specifications.

17-25

17 SISO Design Tool

You can choose among the following design methods:

• “Optimization-Based Tuning” on page 17-28 — Optimize compensator
parameters using design requirements implemented in graphical tuning
and analysis plots

• “PID Tuning” on page 17-29 — Tune PID controller parameters using the
Robust response time tuning algorithm or classic tuning formulas

• “Internal Model Control (IMC) Tuning” on page 17-37 — Obtain a full-order
stabilizing feedback controller using the IMC design method

• “LQG Synthesis” on page 17-38 — Design a full-order stabilizing feedback
controller as a Linear-Quadratic-Gaussian (LQG) tracker

• “Loop Shaping” on page 17-40 — Find a full-order stabilizing feedback
controller with a desired open loop bandwidth or shape

17-26

Using the SISO Design Task in the Controls & Estimation Tools Manager

After you select a design method, the pane updates to display the
corresponding options.

Note If the particular design method you are using does not apply or fails, try
selecting different tuning specifications or switch to a different design method.

Stability of an Effective Plant for Automated Tuning
Knowing the stability of the effective plant in your model may help you
understand which automated tuning methods work for your model. Some of
the automated tuning methods only apply to compensators whose open loops

(L C P=
∧
) have stable effective plants (P

∧
).

An effective plant is the system controlled by the compensator you design
and contains all elements of the open loop in your model other than this
compensator. The following figure shows two examples of effective plants.

" #

���������	
���
�������	�	
���
��	�	��������	���

"�

���������	
���	�������
�	
����	�	����������	��
�	���	��������	���
�

"� #

�
��

��

Generic Work Flow
For each method, follow these steps to do your design:

1 Select an automated tuning algorithm from the Design method drop-down
menu.

2 If you select Optimization-Based Tuning, stop here and see
“Optimization-Based Tuning” on page 17-28.

17-27

17 SISO Design Tool

3 Select a compensator from the drop-down menu.

4 Determine how you want the compensator to perform and set the tuning
specifications.

5 Click Update Compensator and notice the changes in the associated
design and analysis plots.

Note If you encounter a disabled Update Compensator button, try
selecting different tuning specifications (Step 4) or switch to a different
tuning algorithm (Step 1). The disabled button means that the current
method does not work for your model.

Optimization-Based Tuning
Optimization-based tuning is available only if you have Simulink Design
Optimization software installed. You can use this method to either:

• Directly tune response signals within Simulink models.

• Tune responses of LTI systems using a SISO Design Task.

17-28

Using the SISO Design Task in the Controls & Estimation Tools Manager

See “Frequency Domain Response Optimization Example” in the Simulink
Design Optimization documentation for more details.

PID Tuning
PID (proportional-integral-derivative) control is the most popular control
technique used in modern industry.

To use automatic PID tuning, select PID Tuning from the Automated Tuning
pane of the Control and Estimation Tools Manager. In most cases, the PID
controllers resulting from PID tuning provide acceptable performance. Use
the “Analysis Plots” on page 17-24 to verify design results.

17-29

17 SISO Design Tool

Types of PID Controllers.
SISO Design Tool provides automated tuning for the following PID controller
types.

• P — Proportional-only control

• I — Integral-only control (available only for the Robust response time
tuning method)

• PI — Proportional-integral control

• PD — Proportional-derivative control (available only for the Robust
response time tuning method)

• PDF — Proportional-derivative control with a low-pass filter on the
derivative term (available only for the Robust response time tuning
method)

• PID — Proportional-integral-derivative control

17-30

Using the SISO Design Task in the Controls & Estimation Tools Manager

• PIDF — Proportional-integral-derivative control with a low-pass filter on
the derivative term

PID Tuning Methods.
SISO Design Tool provides a Robust response time algorithm for interactive
tuning, as well as six well-known classical tuning methods.

Robust response time. This method computes PID parameters to robustly
stabilize your system based on the bandwidth and phase margin that you
specify. Using the robust response time method you can:

• Tune interactively, adjusting bandwidth and phase margin to achieve your
desired balance between performance and robustness

• Tune any type of PID controller (P, I, PI, PD, PDF, PID, or PIDF)

• Tune all PID parameters, including the derivative filter

• Design for plants that are stable, unstable, or integrating

Classical design formulas. SISO Design Tool includes the following
well-known PID design formulas:

• Approximate MIGO frequency response— Closed-loop frequency-domain
approximate M-constrained integral gain approximation (see [1], Section
7.5).

• Approximate MIGO step response — Open-loop time-domain
approximate M-constrained integral gain approximation (see [1], Sections
7.3–7.4).

• Chien-Hrones-Reswick — Approximates the plant as a first-order
model with a time delay and computes PID parameters using a
Chien-Hrones-Reswick look-up table for zero overshoot and disturbance
rejection (see [1], Section 6.2).

• Skogestad IMC — Approximates the plant as a first-order model with a
time delay and computes PID parameters using Skogestad design rules
(see [2]).

(This method is different from selecting “Internal Model Control (IMC)
Tuning” on page 17-37 as the full-order compensator tuning method).

17-31

17 SISO Design Tool

• Ziegler-Nichols frequency response — Computes controller
parameters from a Ziegler-Nichols lookup table, based on the ultimate gain
and frequency of the system (see [1], Section 6.2).

• Ziegler-Nichols step response — Approximates the plant as a
first-order model with a time delay that and computes PID parameters
using the Ziegler-Nichols design method (see [1], Section 6.2).

The classical design formulas:

• Require a stable or integrating plant.

• Can design for P, PI, PID, or PID with derivative filter.

• Cannot tune the derivative filter. If you select PID with derivative filter,
classical design formulas set the filter time constant to Td/10, where Td is
the tuned derivative time.

Automated Tuning using the Robust Response Time Method.
To use the robust response time tuning method:

1 Select Robust response time from the Tuning method menu.

2 Choose a controller type by clicking the corresponding radio button. To
include a first-order filter on the derivative action for PD or PID controller
type, check the Design with first order derivative filter checkbox.

17-32

Using the SISO Design Task in the Controls & Estimation Tools Manager

Note If you are tuning a PID Controller block in a Simulink model and
your block is type P, I, or PI, select the same controller type as the block. If
your block is type PD or PID, select the corresponding button and check the
Design with first order derivative filter checkbox.

3 Click Update Compensator to design a controller of the selected type.

By default, the SISO Design Tool automatically computes controller
parameters for balanced performance and robustness.

4 Analyze the response using the analysis plots you select on the Analysis
Plots pane.

5 To design a controller interactively, select Interactive (adjustable
performance and robustness) from the Design mode menu. This
selection activates the Bandwidth and Phase Margin sliders.

17-33

17 SISO Design Tool

Adjust the bandwidth and phase margin to achieve your desired controller
performance. For example:

• Increase the bandwidth for a more aggressive controller.

• Increase the phase margin to reduce overshoot.

You can adjust the bandwidth and phase margin values by:

• Moving the sliders

• Entering values in the text field

• Incrementally adjusting the values in the text field using the up and
down arrows.

To increase or decrease the bandwidth by a factor of 10, click the right
or left double arrows, respectively.

17-34

Using the SISO Design Task in the Controls & Estimation Tools Manager

Note Click the Reset bandwidth and phase margin button at any time
to return the sliders to the bandwidth and phase margin of the default
compensator design for your plant.

6 Click Update Compensator again. SISO Design Tool computes new
controller parameters for the specified target bandwidth and phase margin.
Repeat steps 4-6 as necessary to achieve your desired performance.

Note SISO Design Tool displays the tuned compensator in zpk form in
the Compensator section of the Automated Tuning Pane. To convert the
compensator to parallel or standard PID form, export the compensator to the
MATLAB workspace, as described in “SISO Design Task Node Menu Bar” on
page 17-5. Then use the pid or pidstd commands to convert the exported
compensator to parallel or standard PID parameters, respectively.

Automated Tuning using Classical Design Formulas.
To use one of the classical design formulas:

1 Select Classical design formulas from the Tuning method menu.

2 Select a controller type (P, PI, PID, or PID with derivative filter) by clicking
the corresponding radio button.

17-35

17 SISO Design Tool

Note If you are tuning a PID Controller block in a Simulink model and
your block is type P or PI, select the same controller type as the block. If
your block is type PID, select PID with derivative filter. If your block is
type PD or I, use the Robust response time tuning method.

3 Select the classical design formula you want to use from the Formula
menu.

4 Click the Update Compensator button to design a controller using the
selected formula.

Note SISO Design Tool displays the tuned compensator in zpk form in
the Compensator section of the Automated Tuning Pane. To convert the
compensator to parallel or standard PID form, export the compensator to the
MATLAB workspace, as described in “SISO Design Task Node Menu Bar” on
page 17-5. Then use the pid or pidstd commands to convert the exported
compensator to parallel or standard PID parameters, respectively.

17-36

Using the SISO Design Task in the Controls & Estimation Tools Manager

References.

[1] Åström, K. J. and Hägglund, T. Advanced PID Control, Research Triangle
Park, NC: Instrumentation, Systems, and Automation Society, 2006.

[2] Skogestad, S., “Simple analytic rules for model reduction and PID
controller tuning.” Journal of Process Control, Vol. 13, No. 4, 2003, pp.
291–309.

Internal Model Control (IMC) Tuning
IMC design generates a full-order feedback controller that guarantees
closed-loop stability when there is no model error. It also contains an
integrator, which guarantees zero steady-state offset for plants without a free
differentiator. You can use this tuning method for both stable and unstable
plants.

17-37

17 SISO Design Tool

To design an IMC controller:

1 Specify a value in the Dominant closed-loop time constant field.
The initial value is set as 5% of the open-loop settling time. In general,
increasing this value slows down the closed system and makes it more
robust.

2 Specify a value in the Desired controller order field using the slider.
After you obtain a full-order feedback controller, you can try to reduce its
order. You may lose performance and closed-loop stability if you reduce
the order.

3 Click Update Compensator.

LQG Synthesis
LQG tracker design generates a full-order feedback controller that guarantees
closed-loop stability. It also contains an integrator, which guarantees zero
steady-state error for plants without a free differentiator.

17-38

Using the SISO Design Task in the Controls & Estimation Tools Manager

To design an LQG controller:

1 Specify your preference for controller response using the Controller
response slider.

• Move the slider to the left for aggressive control response.

This means that large overshoot is more heavily penalized so that the
controller acts more aggressively. If you believe your model is accurate
and that the manipulated variable has a large enough range, an
aggressive controller is more desirable.

• Move the slider to the right for robust control response.

2 Specify your estimation of the level of measurement noise using the
Measurement noise slider.

• Move the slider to the left for small measurement noise.

17-39

17 SISO Design Tool

This means that you expect low noise from the process output
measurement. Because this measurement is used by the Kalman
estimator, process disturbances are picked up more accurately by the
estimated states. In this case, the controller is freer from robustness
considerations.

• Move the slider to the right for large measurement noise. This results in
a controller that is more robust to measurement noise.

3 Specify your preference for controller order using the Desired controller
order slider.

4 Click Update Compensator.

Loop Shaping
Loop shaping generates a stabilizing feedback controller to match as closely
as possible to a desired loop shape. You can specify this loop shape as a
bandwidth or an open loop frequency response. If you have Robust Control
Toolbox software installed, you can use loop shaping for SISO systems. For
more information see the section on H-Infinity Loop Shaping in the Robust
Control Toolbox User’s Guide.

To design a controller using loop shaping:

1 Select a tuning preference by clicking one of these option buttons:

• Target bandwidth — Allows you to specify a target loop shape

bandwidth (ωb). This results in a loop shape of your specified bandwidth

over an integrator (
ωb
s
).

• Target loop shape— Allows you to specify the target open loop shape
in one of the following representations: state-space, zero-pole-gain, or
transfer functions.

2 Set the tuning options available for your selected tuning preference as
follows:

• If you chose Target bandwidth, specify the desired Target open-loop
bandwidth in the editable box.

17-40

Using the SISO Design Task in the Controls & Estimation Tools Manager

• If you chose Target loop shape, do the following:

– Enter the desired Target open-loop shape (LTI).

This can be a state-space representation, a zero-pole-gain
representation, or a transfer function.

– Enter the desired Frequency range for loop shaping
[wmin,wmax].

17-41

17 SISO Design Tool

3 Specify your preference for controller order using the Desired controller
order slider.

4 Click Update Compensator.

17-42

SISO Design Task Graphical Tuning Window

SISO Design Task Graphical Tuning Window
The following figure shows the Graphical Tuning window and introduces
some terminology.

Graphical Tuning Window

Bode and Nichols plots in the graphical tuning window automatically display
the following information:

• Gain margin and the -180 degree phase crossing frequency where it is
measured

• Phase margin and the 0 dB gain crossing frequency where it is measured

• Whether the characteristic equation 1+L is stable (Stable loop) or
unstable (Unstable loop). L is the open loop plotted in the figure.

17-43

17 SISO Design Tool

For row or column arrays of LTI models, the plots display the characteristics
of the nominal model only.

The following topics describe the Graphical Tuning window features:

• “Using the Graphical Tuning Window Menu Bar” on page 17-45

• “Using the Graphical Tuning Window Toolbar” on page 17-57

• “Using the Right-Click Menus in the Graphical Tuning Window” on page
17-58

17-44

Using the Graphical Tuning Window Menu Bar

Using the Graphical Tuning Window Menu Bar

In this section...

“Overview of the Graphical Tuning Window Menu Bar” on page 17-45

“File” on page 17-45

“Edit” on page 17-48

“View” on page 17-49

“Analysis” on page 17-50

“Tools” on page 17-51

“Window” on page 17-55

“Help” on page 17-55

Overview of the Graphical Tuning Window Menu Bar
Several of the tasks you can do in the SISO Design Tool can be done from
the menu bar, shown below.

File

Using the File menu, you can:

• Import and export models

17-45

17 SISO Design Tool

• Save and reload sessions

• Set toolbox preferences

• Print and print to figure

• Close the Graphical Tuning Window

The following sections describe the File menu options in turn.

Import
Selecting Import opens the same System Data dialog box that clicking
System Data on the Architecture pane does. See “Model Import” on page
17-15.

Export
Selecting Export from the Graphical Tuning window File menu opens the
same SISO Tool Export window that selecting Export from the SISO Design
Task node File menu does. See Export.

Save Session
Selecting Save Session from the Graphical Tuning window File menu opens
the same Save Projects window that selecting Save from the SISO Design
Task node File menu does. See Save.

Load Session
To load a saved SISO Design Tool session, select Load Session from the File
menu. This opens the Load Session dialog.

17-46

Using the Graphical Tuning Window Menu Bar

Sessions are saved as MAT-files. Select the session you want to load from the
list, and click Open. See “Save Session” on page 17-46 for information on
saving SISO Design Tool sessions.

Toolbox Preferences
Select Toolbox Preferences from the File menu to open the Control
System Toolbox Preferences window.

The Control System Toolbox Preferences Window

For a discussion of this window’s features, see "Setting Toolbox Preferences"
online in the Control System Toolbox documentation.

17-47

17 SISO Design Tool

Print
Use Print to send a picture of the Graphical Tuning window to your printer.

Print to Figure
Print to Figure opens a separate figure window containing the design views
in your current Graphical Tuning window.

Close
Use Close to close the Graphical Tuning window.

Edit

Undo and Redo
Selecting Undo and Redo perform the same actions as selecting Undo
and Redo from the SISO Design Task Node Edit menu. See “Edit
Menu Options” on page 17-9.

Tuned Parameters
Selecting Tuned Parameters opens the SISO Tool Preferences dialog box
on the Options page.

SISO Tool Preferences
Selecting the SISO Tool Preferences option opens the same dialog box
that selecting SISO Tool Preferences from the Edit menu on the SISO Design
Task Node. See “Edit Menu Options” on page 17-9.

17-48

Using the Graphical Tuning Window Menu Bar

View

Design Plots Configuration
Select Design Plots Configuration to open the Graphical Tuning pane. See
“Graphical Tuning” on page 17-20.

Closed-Loop Poles
Select Closed-Loop Poles from View to open the Closed-Loop Pole
Viewer.

This window displays all the closed-loop pole values of the selected feedback
loop and the associated damping and frequency values.

Design History
Select Design History from the View menu to open the Design History
window, which displays all the actions you’ve performed during a design
session. You can save the history to an ASCII flat text file by clicking Save
to Text File.

17-49

17 SISO Design Tool

Analysis

Common Response Plots
Each of the top group of items in the Analysis menu opens an LTI Viewer
that is dynamically linked to your SISO Design Tool. You have the following
response plot choices:

• Response to Step Command — The closed-loop step response of your
system

• Rejection of Step Disturbance — The open-loop step response of your
system

• Closed-Loop Bode— The closed-loop Bode diagram for your system

• Compensator Bode— The open-loop Bode diagram for your compensator

• Open-Loop Nyquist— The open-loop Nyquist plot for your system

When you make changes to the design via the Graphical Tuning window, the
Compensator Editor pane, or the Automated Tuning pane, the response plots
in the LTI Viewer automatically change to reflect the new design’s responses.

Other Loop Responses
If you choose Other Loop Responses, the Analysis Plots pane opens. See
“Analysis Plots” on page 17-24.

17-50

Using the Graphical Tuning Window Menu Bar

Tools

Continuous/Discrete Conversions Using the Sample Time
Conversion Dialog Box

• “Converting Continuous-Time Models to Discrete-Time Models” on page
17-51

• “Converting Discrete-Time Models to Continuous-Time” on page 17-52

• “Changing the Sample Time of a Discrete-Time Model” on page 17-53

Converting Continuous-Time Models to Discrete-Time Models. To
convert a continuous-time model to a discrete-time model, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete
Conversions to open the Sample Time Conversion window.

2 Specify a positive number for the sample time in the Sample time (sec)
field.

3 Select a continuous-to-discrete conversion method for each component of
your model. The components include the plant (G), the compensator (C),
the prefilter (F), or the sensor (H). You can choose from the following
conversion methods:

17-51

17 SISO Design Tool

• Zero-order hold

• First-order hold

• Tustin

• Tustin with prewarping

Note If you choose Tustin with prewarping, you must specify the
critical frequency in radians per second.

• Matched pole/zero

For more information on each of these conversion methods, see
“Continuous-Discrete Conversion Methods” on page 5-19 in the Control
System Toolbox documentation.

Converting Discrete-Time Models to Continuous-Time. To convert a
discrete-time model to a continuous-time model, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete
Conversions to open the Sample Time Conversion window.

2 Select a discrete-to-continuous conversion method for each component of
your model. The components include the plant (G), the compensator (C),

17-52

Using the Graphical Tuning Window Menu Bar

the prefilter (F), or the sensor (H). You can choose from the following
conversion methods:

• Zero-order hold

• First-order hold

• Tustin

• Tustin with prewarping

Note If you choose Tustin with prewarping, you must specify the
critical frequency in radians per second.

• Matched pole/zero

For more information on each of these conversion methods, see
“Continuous-Discrete Conversion Methods” on page 5-19 in the Control
System Toolbox documentation.

Changing the Sample Time of a Discrete-Time Model. To change the
sample time of (resample) a discrete system, perform these steps:

1 In the SISO Design Tool, select Tools > Continuous/Discrete
Conversions to open the Sample Time Conversion window.

2 Click the Discrete time with new sample time option button.

17-53

17 SISO Design Tool

3 Specify a positive number for the sample time in the Sample time (sec)
field.

Draw Simulink Diagram

Note You must have a license for Simulink to use this feature. If you do not
have Simulink, this option does not appear under the Tools menu.

Select Draw Simulink Diagram from the Tools menu to draw a block
diagram of your system (plant, compensator, prefilter, and sensor). The
following diagram shows how the tool would render the DC motor example
described in the Control System Toolbox Getting Started Guide.

17-54

Using the Graphical Tuning Window Menu Bar

Automated Tuning
Select Automated Tuning from the Tools menu in the SISO Design Tool
to open the Automated Tuning tab of the Control and Estimation Tools
Manager. You can use this tab to perform automated tuning of compensators.
For more information, see “Automated Tuning Design”.

Window
The Window menu item lists all of the windows open in the MATLAB
technical computing environment. The first item is always the MATLAB
Command Window. After that, the windows you have opened are listed in
the order in which you opened them. Select any window from the list to make
it the active window.

Help
Help brings you to various places in the Control System Toolbox help system.
This figure shows the menu.

17-55

17 SISO Design Tool

Each topics takes you to brief discussions of basic information about the SISO
Design Tool and the Control System Toolbox software:

• SISO Design Tool Help— An overview of the SISO Design Tool

• Control System Toolbox Help — A roadmap for the Control System
Toolbox help

• What’s This? — Activates the "What’s This?" cursor, which appears as a
question mark. Click in various regions of the SISO Design Tool to see brief
descriptions of the tool’s features.

• Importing/Exporting Models — How to import models into the SISO
Design Tool and how to export completed designs

• Tuning Compensators — Basic information about adjusting gains and
adding dynamics to your prefilter (F) and compensator (C)

• Viewing Loop Responses— How to open an LTI Viewer containing loop
responses for your system. Many response types are available.

• Viewing System Data— How to see information about your model

• Storing/Retrieving Designs — How to store and retrieve designed
systems

• Customizing the SISO Tool — How to open the SISO Tool Preferences
editor, which allows you to customize plot displays in the tool

• Examples— A link to Control System Toolbox featured examples

• About the Control System Toolbox software— The version number of
your Control System Toolbox software

17-56

Using the Graphical Tuning Window Toolbar

Using the Graphical Tuning Window Toolbar
The toolbar performs the following operations:

• Add and delete real and complex poles and zeros

• Zoom in and out

• Invoke the SISO Design Tool’s context-sensitive help

This picture shows the toolbar.

Options Available from the Toolbar

You can use the tool tips feature to find out what a particular icon does. Just
place your mouse over the icon in question, and you will see a brief description
of what it does.

Once you’ve selected an icon, your mouse stays in that mode until you press
the icon again.

You can reach all of these options from the right-click menus.

17-57

17 SISO Design Tool

Using the Right-Click Menus in the Graphical Tuning
Window

In this section...

“Overview of the Right-Click Menus” on page 17-58

“Add Pole/Zero” on page 17-59

“Delete Pole/Zero” on page 17-62

“Edit Compensator” on page 17-63

“Gain Target” on page 17-63

“Show” on page 17-63

“Multimodel Display” on page 17-64

“Design Requirements” on page 17-64

“Grid” on page 17-77

“Full View” on page 17-77

“Properties” on page 17-78

“Select Compensator” on page 17-79

“Status Pane” on page 17-79

Overview of the Right-Click Menus
The Graphical Tuning window provides right-click menus for all the views
available. These views include the root-locus, open-loop Bode diagrams,
Nichols plot, and the closed-loop Bode diagrams. The menu items in each
of these views are identical. The design requirements, however, differ,
depending on which view you are accessing the menus from.

You can use the right-click menu to design a compensator by adding poles,
zeros, lead, lag, and notch filters. In addition, you can use this menu to
add grids and zoom in on selected regions. Also, you can open each view’s
Property Editor to customize units and other elements of the display.

17-58

Using the Right-Click Menus in the Graphical Tuning Window

Note Click items on the menu bar pictured below to get help contents.

Open-Loop Right-Click Menu

Note that if you have a closed-loop response, the Gain Target menu item is
replaced by “Select Compensator” on page 17-79.

Add Pole/Zero
The Add Pole/Zero menu options give you the ability to add dynamics to
your compensator design, including poles, zeros, lead and lag networks, and
notch filters. The following pole/zero configurations are available:

• Real Pole

• Complex Pole

• Integrator

• Real Zero

• Complex Zero

• Differentiator

• Lead

• Lag

• Notch

In all but the integrator and differentiator, once you select the configuration,
your cursor changes to an ‘x’. To add the item to your compensator design,

17-59

17 SISO Design Tool

place the x at the desired location on the plot and left-click your mouse.
You will see the root locus design automatically update to include the new
compensator dynamics.

The notch filter has three adjustable parameters. For a discussion about how
to add and adjust notch filters, see "Adding a Notch Filter" in the Control
System Toolbox Getting Started Guide.

Note For systems with FRD plants, you cannot add or modify poles and
zeros outside the plotted frequency range on Bode and Nichols plots. Instead,
you can make such modifications using the Compensator Editor pane of
the Control and Estimation Tools Manager. For more information, see
“Compensator Editor” on page 17-19.

Example: Adding a Complex Pair of Poles
This example shows you how to add a complex pair of poles to the open-loop
Bode diagram. First, type

load ltiexamples
sisotool('bode',sys_dc)

at the MATLAB prompt. This opens the SISO Design Tool with the DC motor
example loaded and the open-loop Bode diagram displayed in the Graphical
Tuning window.

17-60

Using the Right-Click Menus in the Graphical Tuning Window

To add a complex pair of poles:

1 Select Add Pole/Zero->Complex Pole from the right-click menu

2 Place the mouse cursor where you want the pole to be located

3 Left-click to add the pole

Your Graphical Tuning window should look similar to this.

17-61

17 SISO Design Tool

In the case of Bode diagrams, when you place a complex pole, the default
damping value is 1, which means you have a double real pole. To change the
damping, grab the red ‘x’ by left-clicking on it and drag it upward with your
mouse. You will see damping ratio change in the Status pane at the bottom of
the SISO Design Tool.

Delete Pole/Zero
Select Delete Pole/Zero to delete poles and zeros from your compensator
design. When you make this selection, your cursor changes to an eraser. Place
the eraser over the pole or zero you want to delete and left-click your mouse.

Note the following:

17-62

Using the Right-Click Menus in the Graphical Tuning Window

• You can only delete compensator poles and zeros. Plant (G in the feedback
structure pane) poles and zeros cannot be altered.

• If you delete one of a pair of poles or zeros, the other member of the pair
is also removed.

Edit Compensator
Edit Compensator opens the Compensator Editor pane in the SISO
Design Task. You can use this pane to adjust the compensator gain and add or
remove compensator poles and zeros from your compensator (C) or prefilter (F)
design. See “Compensator Editor” on page 17-19 for a discussion of this pane.

Gain Target
This feature is intended for users of the Simulink Control Design software. It
is nonfunctional in the Control System Toolbox software.

Show
Use Show to select/deselect the display of characteristics relevant to which
view you are working with. This figure displays the Show submenu for the
open-loop Bode diagram.

For this particular view, the options available are magnitude, phase, and
stability margins. Selecting any of these toggles between showing and hiding
the feature. A check next to the feature means that it is currently displayed
on the Bode diagram plots. Although the characteristics are different for
each view in the Graphical Tuning window, they all toggle on and off in the
same manner.

17-63

17 SISO Design Tool

Multimodel Display
This menu is enabled only when you import or open the SISO Design Tool
with row or column arrays of LTI models.

Use Multimodel Display to view the responses of models in an LTI array
as individual responses or as an envelope encompassing all responses on
the Bode and Nichols plots.

On the Root Locus plot, use this menu to show or hide the pole/zero locations
of all models in the array, except the nominal one.

For more information on control design analysis for multiple models, see
“Control Design Analysis of Multiple Models” in the Getting Started Guide.

Design Requirements
When designing compensators, it is common to have design specifications that
call for specific settling times, damping ratios, and other characteristics. The
Graphical Tuning window provides tools for design requirements that can
help make the task of meeting design specifications easier.

The New Design Requirement dialog box lets you create design requirements
by creating graphical representations for feasible and nonfeasible regions,
automatically changes to reflect which design requirements are available for
the view in which you are working. Select Design Requirements > New
to open the New Design Requirement dialog box.

17-64

Using the Right-Click Menus in the Graphical Tuning Window

Since each view has a different set of design requirements, click the following
links to go to the appropriate descriptions:

• “Design Requirements for the Root Locus” on page 17-65

• “Design Requirements for Open- and Closed-Loop Bode Diagrams” on
page 17-68

• “Design Requirements for Open-Loop Nichols Plots” on page 17-72

• “LTI Viewer for SISO Design Task Design Requirements” on page 17-80

For row or column arrays of LTI models, the design requirements are for the
nominal plant that you are designing the controller for. You can analyze
the effects of this controller on the remaining models. See “Control Design
Analysis of Multiple Models” in the Getting Started Guide.

Design Requirements for the Root Locus
For the root locus, you can use the following design requirements:

• “Settling Time” on page 17-65

• “Percent Overshoot” on page 17-66

• “Damping Ratio” on page 17-66

• “Natural Frequency” on page 17-66

• “Region Constraint” on page 17-66

Use the Design requirement type drop-down list to select a design
requirement. In each case, to specify the design requirement, enter the value
in the Design requirement parameters pane. You can select any or all of
them, or have more than one of each.

Settling Time. If you specify a settling time in the continuous-time root locus,
a vertical line appears on the root locus plot at the pole locations associated
with the settling time value provided (using a first-order approximation). This
vertical line is exact for a second order system and is only an approximation
for higher order systems. In the discrete-time case, the design requirement
boundary is a curved line.

17-65

17 SISO Design Tool

Percent Overshoot. Specifying percent overshoot in the continuous-time
root locus causes two rays, starting at the root locus origin, to appear.
These rays are the locus of poles associated with the percent value (using
a second-order approximation). In the discrete-time case, the design
requirement appears as two curves originating at (1,0) and meeting on the
real axis in the left-hand plane.

Note that the percent overshoot (p.o.) design requirement can be expressed
in terms of the damping ratio, as in this equation:

p o. . exp= −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

100
1 2

where ζ is the damping ratio.

Damping Ratio. Specifying a damping ratio in the continuous-time root
locus causes two rays, starting at the root locus origin, to appear. These rays
are the locus of poles associated with the damping ratio. In the discrete-time
case, the design requirement boundary appears as curved lines originating at
(1,0) and meeting on the real axis in the left-hand plane.

Natural Frequency. If you specify a natural frequency lower bound, a
semicircle centered around the root locus origin appears. If you specify a
natural frequency upper bound, the inverse of this semicircle appears. The
radius equals the natural frequency.

Region Constraint. Specifying a region constraint at given locations causes
black lines and a yellow area to appear. The vertices of this free-form
piecewise region are defined by the specified real and imaginary values.

Example: Adding Damping Ratio Design Requirements
This example adds a damping ratio design requirement of 0.707.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool(sys_dc)

17-66

Using the Right-Click Menus in the Graphical Tuning Window

This opens the SISO Design Tool with the DC motor example imported.

2 From the root locus right-click menu, select Design Requirement > New
to open the New Design Requirement dialog box.

3 To add the design requirement, select Damping Ratio as the design
requirement. Click OK to accept the default damping ratio of 0.707.

The Graphical Tuning window should now look similar to this figure.

Damping Ratio Requirements in the Root Locus

The two rays centered at (0,0) represent the damping ratio boundaries. The
dark edge is the region boundary, and the shaded area outlines the exclusion
region. This figure explains what this means for this design requirement.

17-67

17 SISO Design Tool

You can, for example, use this design requirement to ensure that the
closed-loop poles, represented by the red squares, have some minimum
damping. Try adjusting the gain until the damping ratio of the closed-loop
poles is 0.7.

Design Requirements for Open- and Closed-Loop Bode
Diagrams
For both the open- and closed-loop Bode diagrams, you have the following
options:

• “Upper Gain Limit” on page 17-68

• “Lower Gain Limit” on page 17-69

• “Gain and Phase Margin” on page 17-69

Specifying any of these design requirements causes lines to appear in the
Bode magnitude curve. To specify an upper or lower gain limit, enter the
frequency range, the magnitude limit, and/or the slope in decibels per decade,
in the appropriate fields of the New design requirement dialog box. You
can have as many gain limit design requirements as you like in your Bode
magnitude plots.

Upper Gain Limit. You can specify one or multiple piecewise linear upper
gain limits over a frequency range, which appear as straight lines on the Bode
magnitude curve. You must select frequency limits, the upper gain limit in
decibels, and the slope in dB/decade.

17-68

Using the Right-Click Menus in the Graphical Tuning Window

Lower Gain Limit. You can specify one or multiple lower gain limit in the
same fashion as the upper gain limit.

Gain and Phase Margin. You can specify a lower bound for the gain, the
phase margin, or both. The specified bounds appear in text on the Bode
magnitude plot.

Example: Adding Upper Gain Limits
This example shows you how to add two upper gain limit requirements to
the open-loop Bode diagram.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool('bode',Gservo)

This opens the SISO Design Tool with the servomechanism model loaded.

2 Use the right-click menu to add a grid.

17-69

17 SISO Design Tool

3 To add an upper gain limit requirement of 0 dB from 10 rad/sec to 100
rad/sec, open the New Design Requirement dialog box and select Upper
gain limit from the pull-down menu. Fill in the dialog box fields as shown
in the following figure.

17-70

Using the Right-Click Menus in the Graphical Tuning Window

Your Graphical Tuning window should now look like this (you may have
to adjust some axis limits).

17-71

17 SISO Design Tool

4 To constrain the roll off, open the New Design Requirement dialog box and
add an upper gain limit from 100 rad/sec to 1000 rad/sec with a slope of -20
db/decade. This figure shows the result.

With these design requirements in place, you can see how much you can
increase the compensator gain and still meet design specifications.

Note that you can change the design requirements by moving them with
your mouse. See “Editing Design Requirements” on page 17-75 for more
information.

Design Requirements for Open-Loop Nichols Plots
For open-loop Nichols plots, you have the following design requirement
options:

17-72

Using the Right-Click Menus in the Graphical Tuning Window

• “Phase Margin” on page 17-73

• “Gain Margin” on page 17-73

• “Closed-Loop Peak Gain” on page 17-73

• “Gain-Phase Design Requirement” on page 17-73

Specifying any of these design requirements causes lines or curves to appear
in the Nichols plot. In each case, to specify the design requirement, enter the
value in the Design requirement parameters pane. You can select any or
all of them, or have more than one of each.

Phase Margin. Specify a minimum phase margin at a given location.
For example, you can require a minimum of 30 degrees at the -180 degree
crossover. The phase margin specified should be a number greater than 0.
The location must be a -180 plus a multiple of 360 degrees. If you enter an
invalid location point, the closest valid location is selected.

Gain Margin. Specify a gain margin at a given location. For example, you
can require a minimum of 20 dB at the -180 degree crossover. The location
must be -180 plus a multiple of 360 degrees. If you enter an invalid location
point, the closest valid location is selected.

Closed-Loop Peak Gain. Specify a peak closed-loop gain at a given location.
The specified dB value can be positive or negative. The design requirement
follows the curves of the Nichols plot grid, so it is recommended that you have
the grid on when using this feature.

Gain-Phase Design Requirement. Specify both a gain and phase design
requirement at a given location. The vertices of this free-form piecewise
region are defined by the specified open-loop phase and open-loop gain values.

Example: Adding a Closed-Loop Peak Gain Design
Requirement
This example shows how to add a closed-loop peak gain design requirement to
the Nichols plot.

1 At the MATLAB prompt, type the following:

load ltiexamples

17-73

17 SISO Design Tool

sisotool('nichols',Gservo)

This opens the SISO Design Tool with Gservo imported as the plant.

2 Use the right-click menu to add a grid, as this figure shows.

3 To add closed-loop peak gain of 1 dB at -180 degrees, open the New Design
Requirement dialog box and select Closed-Loop Peak Gain from the
pull-down menu. Set the peak gain field to 1 dB.

The figure shows the resulting design requirement.

17-74

Using the Right-Click Menus in the Graphical Tuning Window

As long as the curve is outside of the gray region, the closed-loop gain is
guaranteed to be less than 1 dB. Note that this is equivalent, up to second
order, to specifying the peak overshoot in the time domain. In this case, a 1
dB closed-loop peak gain corresponds to an overshoot of 15%.

Editing Design Requirements
To edit an existing design requirement, left-click on the design requirement
boundary to select it. Two black squares appear on the design requirement
when it is selected. In general, there are two ways to adjust a design
requirement:

• Click on the design requirement boundary and drag it. Generally, this does
not change the shape of the boundary. That is, the adjustment is strictly a
translation of the design requirement.

17-75

17 SISO Design Tool

• Grab a black square and drag it. In this case, you can rotate, expand,
and/or contract the design requirement.

For example, in Bode diagrams you can move an upper gain limit by clicking
on it and moving it anywhere in the plot region. As long as you haven’t
grabbed a black square, the length and slope of the gain limit will not change
as you move the line. On the other hand, you can change the slope of the
upper gain limit by grabbing one of the black squares and rotating the line.
In all cases, the Status pane at the bottom of the Graphical Tuning window
displays the design requirement values as they change.

This figure shows the process of editing an upper gain limit in the open-loop
Bode diagram.

17-76

Using the Right-Click Menus in the Graphical Tuning Window

An alternative way to adjust a design requirement is to select Design
Requirements->Edit from the right-click menu. The Edit Design
Requirement window opens.

To adjust a design requirement, select the boundary by clicking on it and
change the values in the fields of the Design requirement parameters pane. If
you have additional design requirement in, for example, the Bode diagram,
you can edit them directly from this window by selecting Open-Loop Bode
from the Editor menu.

Deleting Design Requirements
To delete a design requirement, place your cursor directly over the design
requirement yellow region. Right-click to open a menu containing Edit
and Delete. Select Delete from the menu list; this eliminates the design
requirement. You can also delete design requirements by left-clicking on a
design requirement boundary and then pressing the BackSpace or Delete
key on your keyboard.

Finally, you can delete design requirements by selecting Undo Add Design
Requirement from the Edit menu, or pressing Ctrl+Z if adding design
requirements was the last action you took.

Grid
Grid adds a grid to the selected plot.

Full View
Selecting Full View causes the plot to scale limits so that the entire curve is
visible.

17-77

17 SISO Design Tool

Properties
Properties opens the Property Editor, which is a GUI for customizing
root locus, Bode diagrams, and Nichols plots inside the Graphical Tuning
window. The Property Editor automatically reconfigures as you select among
the different plots open.

This picture shows the open window for the root locus.

You can use this window to change titles and axis labels, reset axes limits,
add grid lines, and change the aspect ratio of the plot. Note that you can
also activate this menu by double-clicking anywhere in the root locus away
from the curve.

The are only three panes in the Property Editor: Labels, Limits, and Options.
The configuration of each page differs, depending on whether you’re working
with the root-locus, Bode diagrams, or the open-loop Nichols plot. Click
the Help button on the Property Editor you have open to view information
specific to that editor, or click on the links below:

• Root locus

• Bode diagram

• Nichols plot

17-78

Using the Right-Click Menus in the Graphical Tuning Window

Select Compensator
This option allows you to select which compensator to edit for closed-loop
Bode response.

Status Pane
The Status pane is located at the bottom of the Graphical Tuning window.
It displays the most recent action you have performed, occasionally provides
advice on how to use the window, and tracks key parameters when moving
objects in the design views.

17-79

17 SISO Design Tool

LTI Viewer for SISO Design Task Design Requirements

In this section...

“Overview of LTI Viewer Design Requirements” on page 17-80

“Available Design Requirements in the LTI Viewer” on page 17-80

“Example: Time Domain Requirement” on page 17-81

Overview of LTI Viewer Design Requirements
You can use the LTI Viewer for SISO Design Tasks to specify both time and
frequency domain requirements in analysis plots. Adding and editing design
requirements is similar to those illustrated in the Graphical Tuning window.

Note To add design requirements, you must open the LTI Viewer from the
SISO Design Task in the Control and Estimation Tools Manager. Design
requirements are not available from an LTI Viewer that is opened using the
ltiview command.

For row or column arrays of LTI models, the design requirements are for the
nominal model that you are designing the controller for. You can analyze
the effects of this controller on the remaining models. See “Control Design
Analysis of Multiple Models” in the Getting Started Guide.

Available Design Requirements in the LTI Viewer
The design requirements for Bode, Root Locus, and Nichols plots can be
applied to both graphical tuning windows and the LTI viewer. See “Design
Requirements” on page 17-64 for information on graphical tuning design
requirements.

You can also specify the following design requirements for both step and
impulse response plots:

• Upper time response bounds— Creates an upper amplitude bound for
a specified time duration.

17-80

LTI Viewer for SISO Design Task Design Requirements

• Lower time response bounds — Creates a lower amplitude bound for
a specified time duration.

If you are using a step response plot, you can also specify the following design
requirement:

• Step response bounds — Creates a group of upper and lower time
response bounds, in the shape of a step response envelope, to encompass
your specified design requirement parameters.

Example: Time Domain Requirement
This example shows you how to create a lower bound time response design
requirement.

1 At the MATLAB prompt, type the following:

load ltiexamples
sisotool(Gservo)

2 From the Analysis Plot pane, select step response. See “Analysis Plots” on
page 17-24 if you are unfamiliar with this task.

3 Select Design Requirements->New from the LTI Viewer right-click menu.

4 Select Lower time response bound from the Design requirements menu.

5 Set Time from 0.1 to 0.5 s.

6 Set Amplitude from 0 to 0.8. Your New Design Requirement window
should look like this.

17-81

17 SISO Design Tool

7 Click OK. This adds the design requirement. Your step response should
look like this.

17-82

18

LTI Viewer

• “LTI Viewer Overview” on page 18-2

• “Using the Right-Click Menu in the LTI Viewer” on page 18-4

• “Importing, Exporting, and Deleting Models in the LTI Viewer” on page
18-12

• “Selecting Response Types” on page 18-16

• “Analyzing MIMO Models” on page 18-20

• “Customizing the LTI Viewer” on page 18-26

18 LTI Viewer

LTI Viewer Overview
LTI Viewer is a graphical user interface (GUI) that simplifies the analysis of
linear, time-invariant systems. You use the LTI Viewer to view and compare
the response plots of SISO and MIMO systems, or of several linear models
at the same time. You can generate time and frequency response plots to
inspect key response parameters, such as rise time, maximum overshoot,
and stability margins.

The easiest way to work with the LTI Viewer is to use the right-click menus.
For example, type

load ltiexamples
ltiview(sys_dc)

at the MATLAB prompt. The default plot is a step response.

18-2

LTI Viewer Overview

The LTI Viewer can display up to seven different plot types simultaneously,
including step, impulse, Bode (magnitude and phase or magnitude only),
Nyquist, Nichols, sigma, pole/zero, and I/O pole/zero.

See ltiview for help on the function that opens an LTI Viewer. For examples
of how to use the LTI Viewer, see “Linear Analysis Using the LTI Viewer”.

For more information about LTI Viewer menus and options, see:

• “Using the Right-Click Menu in the LTI Viewer” on page 18-4

• “Importing, Exporting, and Deleting Models in the LTI Viewer” on page
18-12

• “Selecting Response Types” on page 18-16

• “Analyzing MIMO Models” on page 18-20

• “Customizing the LTI Viewer” on page 18-26

18-3

18 LTI Viewer

Using the Right-Click Menu in the LTI Viewer

In this section...

“Overview of the Right-Click Menu” on page 18-4

“Setting Characteristics of Response Plots” on page 18-4

“Adding Design Requirements” on page 18-9

Overview of the Right-Click Menu
The quickest way to manipulate views in the LTI Viewer is use the right-click
menu. You can access several LTI Viewer controls and options, including:

• Plot Type — Changes the plot type

• Systems— Selects or deselects any of the models loaded in the LTI Viewer

• Characteristics— Displays key response characteristics and parameters

• Grid — Adds grids to your plot

• Properties — Opens the Property Editor, where you can customize
plot attributes

• Design Requirements — Opens the New Design Requirement window
for adding step response design requirements to your plot (available only
for LTI Viewers linked to the Graphical Tuning window of the SISO Design
Tool)

In addition to right-click menus, all response plots include data markers.
These allow you to scan the plot data, identify key data, and determine the
source system for a given plot.

Setting Characteristics of Response Plots
The Characteristics menu changes for each plot response type.
Characteristics refers to response plot information, such as peak response, or,
in some cases, rise time and settling time.

The next sections describe the menu items for each of the eight plot types.

18-4

Using the Right-Click Menu in the LTI Viewer

Step Response
Step plots the model’s response to a step input.

You can display the following information in the step response:

• Peak Response — The largest deviation from the steady-state value of
the step response

• Settling Time — The time required for the step response to decline and
stay at 5% of its final value

• Rise Time — The time require for the step response to rise from 10% to
90% of its final value

• Steady-State — The final value for the step response

Note You can change the definitions of settling time and rise time using
the Characteristics pane of the Control System Toolbox editor, the LTI
Viewer editor, or the Property editor.

Impulse Response
Impulse Response plots the model’s response to an impulse.

The LTI Viewer can display the following information in the impulse response:

18-5

18 LTI Viewer

• Peak Response— The maximum positive deviation from the steady-state
value of the impulse response

• Settling Time — The time required for the step response to decline and
stay at 5% of its final value

Bode Diagram
Bode plots the open-loop Bode phase and magnitude diagrams for the model.

The LTI Viewer can display the following information in the Bode diagram:

• Peak Response— The maximum value of the Bode magnitude plot over
the specified region

• Stability Margins (Minimum Crossing) — The minimum phase and
gain margins. The gain margin is defined to the gain (in dB) when the
phase first crosses -180°. The phase margin is the distance, in degrees, of
the phase from -180° when the gain magnitude is 0 dB.

• Stability Margins (All Crossings)— Display all stability margins

Bode Magnitude

Bode Magnitude plots the Bode magnitude diagram for the model.

The LTI Viewer can display the following information in the Bode magnitude
diagram:

18-6

Using the Right-Click Menu in the LTI Viewer

• Peak Response, which is the maximum value of the Bode magnitude in
decibels (dB), over the specified range of the diagram.

• Stability (Minimum Crossing)— The minimum gain margins. The gain
margin is defined to the gain (in dB) when the phase first crosses -180°.

• Stability (All Crossings)— Display all gain stability margins

Nyquist Diagrams

Nyquist plots the Nyquist diagram for the model.

The LTI Viewer can display the following types of information in the Nyquist
diagram:

• Peak Response— The maximum value of the Nyquist diagram over the
specified region

• Stability (Minimum Crossing)— The minimum gain and phase margins
for the Nyquist diagram. The gain margin is the distance from the origin to
the phase crossover of the Nyquist curve. The phase crossover is where the
curve meets the real axis. The phase margin is the angle subtended by the
real axis and the gain crossover on the circle of radius 1.

• Stability (All Crossings)— Display all gain stability margins

Nichols Charts
Nichols plots the Nichols Chart for the model.

18-7

18 LTI Viewer

The LTI Viewer can display the following types of information in the Nichols
chart:

• Peak Response— The maximum value of the Nichols chart in the plotted
region.

• Stability (Minimum Crossing)— The minimum gain and phase margins
for the Nichols chart.

• Stability (All Crossings)— Display all gain stability margins

Singular Values

Singular Values plots the singular values for the model.

The LTI Viewer can display the Peak Response, which is the largest
magnitude of the Singular Values curve over the plotted region.

Pole/Zero and I/O Pole/Zero
Pole/Zero plots the poles and zeros of the model with ‘x’ for poles and ‘o’ for
zeros. I/O Pole/Zero plots the poles and zeros of I/O pairs.

There are no Characteristics available for pole-zero plots.

18-8

Using the Right-Click Menu in the LTI Viewer

Adding Design Requirements
If you open an LTI Viewer for the Graphical Tuning window, you have plots
linked to your compensator design. In this environment, the LTI Viewer
provides access to design requirements, a set of graphical tools for creating
constraints in your design plots.

In addition to all the design requirements available in the Graphical Tuning
window, the LTI Viewer has the step response design requirements described
in “Choosing Step Response Specifications” on page 18-9.

For more information on adding design requirements to LTI Viewer plots, see
“LTI Viewer for SISO Design Task Design Requirements” on page 17-80.

Note Design requirements are not available from an LTI Viewer that is
opened using the ltiview command.

Choosing Step Response Specifications
To specify step response characteristics select Design Requirements > New
in the right-click menu. This action opens the New Design Requirements
editor. Select step response bounds from the Design requirement type
pull down menu to display the step response specifications as shown below.

18-9

18 LTI Viewer

The top three options specify the details of the step input:

• Initial value: input level before the step occurs. This option is grayed out
because LTI systems always have intial value equal to 0.

• Step time: time at which the step takes place. This option is grayed out
since LTI systems always have an initial time equal to 0.

• Final value: input level after the step occurs

The remaining options specify the characteristics of the response signal. Each
of the step response characteristics is described in the figure below.

18-10

Using the Right-Click Menu in the LTI Viewer

• Rise time: The time taken for the response signal to reach a specified
percentage of the step’s range. The step’s range is the difference between
the final and initial values.

• % Rise: The percentage used in the rise time.

• Settling time: The time taken until the response signal settles within a
specified region around the final value. This settling region is defined as the
final step value plus or minus the specified percentage of the final value.

• % Settling: The percentage used in the settling time.

• % Overshoot: The amount by which the response signal can exceed the
final value. This amount is specified as a percentage of the step’s range.
The step’s range is the difference between the final and initial values.

• % Undershoot: The amount by which the response signal can undershoot
the initial value. This amount is specified as a percentage of the step’s
range. The step’s range is the difference between the final and initial
values.

Enter values for the response specifications in the Design Requirements
editor, based on the requirements of your model, and then click OK. The
constraint edges will now reflect the constraints specified.

18-11

18 LTI Viewer

Importing, Exporting, and Deleting Models in the LTI
Viewer

In this section...

“Importing Models” on page 18-12

“Exporting Models” on page 18-13

“Deleting Models” on page 18-14

Importing Models
To import models into the LTI Viewer, select Import under the Edit menu.
This opens the LTI Browser, shown below.

Use the LTI Browser to import LTI models into or from the LTI Viewer
workspace.

To import a model:

• Click on the desired model in the LTI Browser List. To perform multiple
selections:

- Hold the Control key and click on nonadjacent models.

- Hold the Shift key while clicking to select multiple adjacent models.

18-12

Importing, Exporting, and Deleting Models in the LTI Viewer

• Click the OK or Apply Button

Note that the LTI Browser lists only the LTI models in the MATLAB
workspace.

Alternatively, you can directly import a model into the LTI Viewer using the
ltiview function, as in

ltiview({'step', 'bode'}, modelname)

See the ltiview function for more information.

Exporting Models
Use Export in the File menu to open the LTI Viewer Export window,
shown below.

The LTI Viewer Export window lists all the models with responses currently
displayed in your LTI Viewer. You can export models back to the MATLAB
workspace or to disk.

To export single or multiple models, follow the steps described in the importing
models section above. If you choose Export to Disk, this window opens.

18-13

18 LTI Viewer

Choose a name for your model(s) and click Save. Your models are stored in
a MAT-file.

Deleting Models
Select Edit->Delete Systems to open the LTI Viewer Delete window.

18-14

Importing, Exporting, and Deleting Models in the LTI Viewer

To delete a model:

• Click on the desired model in the Model list. To perform multiple selections:

1 Click and drag over several variables in the list.

2 Hold the Control key and click on individual variables.

3 Hold the Shift key while clicking, to select a range.

Click the Delete button.

18-15

18 LTI Viewer

Selecting Response Types

In this section...

“Methods for Selecting Response Types” on page 18-16

“Right Click Menu: Plot Type” on page 18-16

“Plot Configurations Window” on page 18-16

“Line Styles Editor” on page 18-18

Methods for Selecting Response Types
There are two methods for selecting response plots in the LTI Viewer:

• Selecting Plot Type from the right-click menus

• Opening the Plot Configurations window

Right Click Menu: Plot Type
If you have a plot open in the LTI Viewer, you can switch to any other
response plot available by selecting Plot Type from the right click menu.

To change the response plot, select the new plot type from the Plot Type
submenu. The LTI Viewer automatically displays the new response plot.

Plot Configurations Window
The Plot Type feature of the right-click menu works on existing plots, but
you can also add plots to an LTI Viewer by using the Plot Configurations
window. By default, the LTI Viewer opens with a closed-loop step response.
To reconfigure an open viewer, select Plot Configuration in the Edit menu.

18-16

Selecting Response Types

Use the radio buttons to select the number of plots you want displayed in your
LTI Viewer. For each plot, select a response type from the menus located on
the right-hand side of the window.

It’s possible to configure a single LTI Viewer to contain up to six response
plots.

18-17

18 LTI Viewer

Available response plots include: step, impulse, Bode (magnitude and phase,
or magnitude only), Nyquist, Nichols, sigma, pole/zero maps, and I/O pole/zero
maps.

Line Styles Editor
Select Edit-> Line Styles to open the Line Styles editor.

The Line Styles editor is particularly useful when you have multiple systems
imported. You can use it change line colors, add and rearrange markers, and
alter line styes (solid, dashed, and so on).

You can use the Linestyle Preferences window to customize the appearance
of the response plots by specifying:

• The line property used to distinguish different systems, inputs, or outputs

• The order in which these line properties are applied

Each LTI Viewer has its own Linestyle Preferences window.

18-18

Selecting Response Types

Setting Preferences
You can use the "Distinguish by" matrix (the top half of the window) to specify
the line property that will vary throughout the response plots. You can group
multiple plot curves by systems, inputs, outputs, or channels (individual
input/output relationships). Note that the Line Styles editor uses radio
buttons, which means that you can only assign one property setting for each
grouping (system, input, etc.).

Ordering Properties
The Order field allows you to change the default property order used when
applying the different line properties. You can reorder the colors, markers,
and linestyles (e.g., solid or dashed).

To change any of the property orders, click the up or down arrow button to
the left of the associated property list to move the selected property up or
down in the list.

18-19

18 LTI Viewer

Analyzing MIMO Models

In this section...

“Overview of Analyzing MIMO Models” on page 18-20

“Array Selector” on page 18-21

“I/O Grouping for MIMO Models” on page 18-23

“Selecting I/O Pairs” on page 18-24

Overview of Analyzing MIMO Models
If you import a MIMO system, or an LTI array containing multiple linear
models, you can use special features of the right-click menu to group the
response plots by input/output (I/O) pairs, or select individual plots for
display. For example, generate an array of two random 3-input, 3-output
MIMO systems and view them in the LTI Viewer:

sys_mimo=stack(1,rss(3,3,3),rss(3,3,3));
ltiview(sys_mimo);

A set of 9 plots appears, one from each input to each output.

18-20

Analyzing MIMO Models

Array Selector
If you import an LTI array into the LTI Viewer, Array Selector appears as
an option in the right-click menu. Selecting this option opens the Model
Selector for LTI Arrays, shown below.

18-21

18 LTI Viewer

You can use this window to include or exclude models within the LTI array
using various criteria.

Arrays
Select the LTI array for model selection using the Arrays list.

Selection Criteria
There are two selection criteria. The default, Index into Dimensions, allows
you to include or exclude specified indices of the LTI Array. Select systems
from the Selection Criterion Setup and specify whether to show or hide the
systems using the pull-down menu below the Setup lists.

The second criterion is Bound on Characteristics. Selecting this options
causes the Model Selector to reconfigure. The reconfigured window is shown
below

18-22

Analyzing MIMO Models

Use this option to select systems for inclusion or exclusion in your LTI Viewer
based on their time response characteristics. The panel directly above the
buttons describes how to set the inclusion or exclusion criteria based on
which selection criteria you select from the reconfigured Selection Criteria
Setup panel.

I/O Grouping for MIMO Models
You can group the plots by inputs, by outputs, or both by selecting I/O
Grouping and then Inputs, Outputs, or All, respectively, from the
right-click menu.

For example, if you select Outputs, the step plot reconfigures into 3 plots,
one for each input.

18-23

18 LTI Viewer

Selecting None returns to the default configuration, where all I/O pairs are
displayed individually.

Selecting I/O Pairs
Another way to organize MIMO system information is to choose I/O Selector
from the right-click menu, which opens the I/O Selector window.

18-24

Analyzing MIMO Models

This window automatically configures to the number of I/O pairs in your
MIMO system. You can select:

• Any individual plot (only one at a time) by clicking on a button

• Any row or column by clicking on Y(*) or U(*)

• All of the plots by clicking [all]

Using these options, you can inspect individual I/O pairs, or look at particular
I/O channels in detail.

18-25

18 LTI Viewer

Customizing the LTI Viewer

In this section...

“Overview of Customizing the LTI Viewer” on page 18-26

“LTI Viewer Preferences Editor” on page 18-26

Overview of Customizing the LTI Viewer
The LTI Viewer has a tool preferences editor, which allows you to set
default characteristics for specific instances of LTI Viewers. If you open a
new instance of either, each defaults to the characteristics specified in the
Toolbox Preferences editor.

LTI Viewer Preferences Editor
Select Viewer Preferences in the Edit menu of the LTI Viewer to open
the LTI Viewer Preferences editor. This figure shows the editor open to
its first pane.

The LTI Viewer Preferences editor contains four panes:

• Units--Convert between various units, including rad/sec and Hertz

18-26

Customizing the LTI Viewer

• Style--Customize grids, fonts, and colors

• Characteristics--Specify response plot characteristics, such as settling time
tolerance

• Parameters--Set time and frequency ranges, stop times, and time step size

If you want to customize the settings for all instances of LTI Viewers, see the
Toolbox Preferences editor.

18-27

18 LTI Viewer

18-28

Index

IndexA
array selector for LTI Viewer 18-21
arrays. See Model arrays 2-59

C
classical control 15-2 15-19
closed loop.. See feedback
connection

feedback 15-11
parallel 15-54
series 15-14

conversion, model
automatic 5-3
between model types 5-2
discrete to continuous (d2c)

with negative real poles 5-21
FRD model, to 5-2
SS model, to 5-2
state-space, to 5-3
TF model, to 5-2
ZPK model, to 5-2

covariance
error 15-56 15-61

creating model arrays 2-59
customizing plots 14-2
customizing subplots 14-18

D
delays

discretization 5-21
Pade approximation 2-29

denominator
specification 1-19

descriptor systems.. See state-space models,
descriptor

design
classical 15-2 15-19
Kalman estimator 15-35 15-49 15-57

LQG 15-30
regulators 15-30
robustness 15-27
root locus 15-8 15-23

desired responses
step responses 18-9

discrete-time models
control design 15-19
Kalman estimator 15-50

discretization 15-20
delay systems 5-21
first-order hold 5-22
matched poles/zeros 5-27
Tustin method 5-24
zero-order hold 5-20

E
error covariance 15-56 15-61

F
feedback 15-11
filtering.. See Kalman estimator
first-order hold (FOH) 5-22

with delays 5-21
FRD (frequency response data) objects 1-22

conversion to 5-2
frequency response 1-23

G
gain margins 15-27
Graphical design window 17-2
Graphical Tuning Preferences Editor 13-9

K
Kalman

filtering 15-49
Kalman estimator

Index-1

Index

continuous 15-35
discrete 15-50
time-varying 15-57

L
LQG (linear quadratic-gaussian) method

continuous LQ regulator 15-35
cost function 15-35
design 15-30 15-45
LQ-optimal gain 15-35
regulator 15-30

LTI arrays
conversion, model.. See conversion

LTI models
conversion 5-2 5-21

See also conversion, model
discretization, matched poles/zeros 5-27

LTI Viewer
array selector 18-21
configuring plots 18-16
customization 18-26
I/O grouping 18-23
importing/exporting models 18-12
MIMO models 18-20
overview 18-2
right-click menu 18-4
selecting I/O pairs 18-24
selecting response types 18-16
SISO Design Task 17-2

LTI Viewer Preferences Editor 13-3

M
margins, gain and phase 15-27
model arrays

creating model arrays 2-59
Model arrays 2-59
model building

feedback connection 15-11

parallel connection 15-54
series connection 15-14

N
numerator

specification 1-19

P
Pade approximation (pade) 2-29
parallel connection 15-54
phase margins 15-27
plot customization 14-2
Plot Tools 14-19
Property Editor 14-3

R
regulation 15-30
robustness 15-27
root locus 15-23

design 15-8 15-23
See also Root Locus Design GUI

S
scaling 16-2
series connection 15-14
SISO Design Task in the Control and Estimation

Tools Manager 17-2
SISO Design Tool 17-2

customizing plots 14-48
root locus right-click menu 17-58

state 1-21 to 1-22
state-space models

conversion to 5-2
See also conversion 5-2

descriptor 1-21
matrices 1-20
model data 1-20

Index-2

Index

scaling 16-2
specification 1-20

step responses
specifications 18-9

subplot customization 14-18

T
time-varying Kalman filter 15-57
Toolbox Preferences Editor 12-2
transfer functions

conversion to 5-2
denominator 1-19

numerator 1-19
specification 1-19

triangle approximation 5-22
Tustin approximation 5-24

with frequency prewarping 5-25

Z
zero-order hold (ZOH) 5-20 15-20

with delays 5-21
zero-pole-gain (ZPK) models

conversion to 5-2

Index-3

	toc
	Linear System Modeling
	Linear System Model Objects
	What Are Model Objects?
	Model Objects Represent Linear Systems
	About Model Data

	Control System Modeling with Model Objects
	Types of Model Objects
	Dynamic System Models
	Static Models
	Numeric Models
	Numeric Linear Time Invariant (LTI) Models
	Identified LTI Models
	Identified Nonlinear Models

	Generalized Models
	Generalized and Uncertain LTI Models
	Control Design Blocks
	Generalized Matrices

	Models with Fixed Coefficients
	Numeric LTI Models
	Applications of Numeric LTI Models
	Types of Numeric LTI Models

	Transfer Functions
	Transfer Function Representations
	Commands for Creating Transfer Functions

	State-Space Models
	State-Space Model Representations
	Explicit State-Space Models
	Descriptor (Implicit) State-Space Models
	Commands for Creating State-Space Models

	Frequency Response Data (FRD) Models
	Frequency Response Data
	Commands for Creating FRD Models

	PID Controllers
	Continuous-Time PID Controller Representations
	Discrete-Time PID Controllers

	Models with Tunable Coefficients
	Tunable Generalized LTI Models
	Modeling Tunable Components
	Modeling Control Systems with Tunable Components
	Internal Structure of Generalized Models

	Using Model Objects
	Simulink Block for LTI Systems
	References

	Model Creation
	SISO Model Creation
	Transfer Function Model Using Numerator and Denominator Coeffici
	More About
	Transfer Function Model Using Zeros, Poles, and Gain
	More About
	State-Space Model
	More About
	Frequency-Response Model
	More About
	Proportional-Integral-Derivative (PID) Controller
	Continuous-Time PID Controller Representations
	Create Continuous-Time Parallel-Form PID Controller
	Create Continuous-Time Standard-Form PID Controller
	More About

	Discrete-Time Model Creation
	Discrete-Time Transfer Function Model
	More About
	Discrete-Time Proportional-Integral-Derivative (PID) Controller
	Discrete-Time PID Controller Representations
	Create Discrete-Time Standard-Form PID Controller
	More About

	MIMO Model Creation
	MIMO Transfer Function Model
	More About
	MIMO State-Space Model
	More About
	MIMO Descriptor State-Space Model
	More About
	MIMO Frequency Response Data Model
	More About
	Select Input/Output Pairs in MIMO Models

	Models with Time Delays
	Modeling Time Delays
	First Order Plus Dead Time Model
	More About
	Input and Output Delay in State-Space Model
	More About
	Transport Delay in MIMO Transfer Function
	Closing Feedback Loops with Time Delays
	More About
	Discrete-Time Transfer Function with Time Delay
	Time-Delay Approximation
	Related Examples
	Time-Delay Approximation in Continuous-Time Open-Loop Model
	Time-Delay Approximation in Continuous-Time Closed-Loop Model
	More About
	Approximate Different Delays with Different Approximation Orders
	Convert Time Delay to Factors of 1/z in Discrete-Time Model
	Fractional Time-Delay Approximation in Discrete-Time Model
	Frequency Response Data (FRD) Model with Time Delay
	More About
	Internal Delays
	Why Internal Delays Are Necessary
	Behavior of Models With Internal Delays
	Inside Time Delay Models
	Functions That Support Internal Time Delays
	Functions That Do Not Support Internal Time Delays
	References

	Models with Parametric or Tunable Coefficients
	Tunable Low-Pass Filter
	More About
	Tunable Second-Order Filter
	More About
	State-Space Model with Both Fixed and Tunable Parameters
	More About
	Control System with Tunable Components
	More About

	Model Arrays
	Model Arrays
	What Are Model Arrays?
	Uses of Model Arrays
	Visualizing Model Arrays
	Visualizing Selection of Models From Model Arrays

	One-Dimensional Model Array with Single Parameter Variation
	Select Models from Array
	More About
	Array With Variations in Two Parameters
	Sample a Tunable (Parametric) Model for Parameter Studies
	More About

	Working with Linear Models
	Data Manipulation
	Model Properties
	Model Properties
	Related Examples
	Specify Model Properties at Model Creation
	Examine and Specify Properties of an Existing Model

	Extract Model Coefficients
	Functions for Extracting Model Coefficients
	Extracting Coefficients of Different Model Type
	Extract Numeric Model Data and Time Delay
	Extract PID Gains from Transfer Function
	More About

	Attach Metadata to Models
	Specify Model Time Units
	Interconnect Models with Different Time Units
	Specify Frequency Units of Frequency-Response Data Model
	Extract Subsystems of Multi-Input, Multi-Output (MIMO) Models
	Specify and Select Input and Output Groups

	Query Model Characteristics
	Query Model Dynamics
	Query Array Size
	Related Examples

	Customize Model Display
	Configure Transfer Function Display Variable
	Configure Display Format of Transfer Function in Factorized Form

	Model Interconnections
	Why Interconnect Models?
	Catalog of Model Interconnections
	Related Examples
	Arithmetic Operations
	Numeric Model of SISO Feedback Loop
	Tunable Model of SISO Feedback Loop
	Multi-Loop Control System
	MIMO Control System
	MIMO Feedback Loop
	How the Software Determines Properties of Connected Models
	Precedence Rules That Determine Model Type
	Recommended Model Type for Building Block Diagrams

	Model Transformation
	Conversion Between Model Types
	Explicit Conversion Between Model Types
	Automatic Conversion Between Model Types
	Recommended Working Representation
	Convert PID Controller to Transfer Function
	Get Current Value of Generalized Model by Model Conversion
	Create a generalized model.
	Tune the generalized model.
	Get the current value of the generalized model.

	Discretize a Compensator
	Improve Accuracy of Discretized System with Time Delay
	Convert Discrete-Time System to Continuous Time
	Continuous-Discrete Conversion Methods
	Choosing a Conversion Method
	Zero-Order Hold
	ZOH Method for Systems with Time Delays

	First-Order Hold
	FOH Method for Systems with Time Delays

	Impulse-Invariant Mapping
	Impulse-Invariant Mapping for Systems with Time Delays

	Tustin Approximation
	Tustin Approximation with Frequency Prewarping
	Tustin Approximation for Systems with Time Delays

	Zero-Pole Matching Equivalents
	Zero-Pole Matching for Systems with Time Delays

	Upsample a Discrete-Time System
	Choosing a Resampling Command
	Why Simplify Models?
	Cancellation Versus Approximation
	Approximate Model with Lower-Order Model
	Choose a Low-Order Approximation Method
	Approximate Model with Unstable or Near-Unstable Pole
	Eliminate States by Pole-Zero Cancellation

	Linear Analysis
	Time Domain Analysis
	Choosing a Time-Domain Analysis Command
	Time-Domain Response Data and Plots
	System Characteristics on Response Plots
	Numeric Values of Time-Domain System Characteristics
	Time-Domain Responses of Discrete-Time Model
	Time-Domain Responses of MIMO Model
	Time-Domain Responses of Multiple Models
	Joint Time- and Frequency-Domain Analysis
	Response from Initial Conditions
	Analysis of Systems with Time Delays
	Considerations to Keep in Mind when Analyzing Systems with Inter

	Frequency Domain Analysis
	Choosing a Frequency-Domain Analysis Command
	Frequency Response of a SISO System
	Frequency Response of a MIMO System
	System Characteristics on Response Plots
	Numeric Values of Frequency-Domain Characteristics of SISO Model
	Pole and Zero Locations
	Assessing Gain and Phase Margins
	Stability of a Feedback Loop
	How Stable is Stable?
	Gain and Phase Margins
	Systems with Multiple Gain or Phase Crossings
	Interactive GUI
	Analyzing Control Systems with Delays
	Control of Processes with Delays
	Example: PI Control Loop with Dead Time
	Pade Approximation of Time Delays
	Sensitivity Analysis
	Discretization
	Some Unique Features of Delay Systems
	Analyzing the Response of an RLC Circuit
	Bandpass RLC Network
	Analyzing the Frequency Response of the Circuit
	Analyzing the Time Response of the Circuit
	Interactive GUI

	Sensitivity Analysis
	Plant Model with Single-Parameter Variation
	Plant Model with Multiple-Parameter Variation
	Study Parameter Variation by Sampling Tunable Model
	Sensitivity of Control System to Time Delays

	Control Design
	PID Controller Design
	PID Controller Design at the Command Line
	Designing Cascade Control System with PI Controllers
	Introduction to Cascade Control
	Plant
	Designing a Single Loop Control System with a PI Controller
	Designing a Cascade Control System with Two PI Controllers
	Performance Comparison

	Single-Input, Single-Output Control Design
	Getting Started with the SISO Design Tool
	Compensator Design Task and the SISO Design Tool
	Compensator Design Problem Example
	Launching the SISO Design Tool and Configuring Design Objectives
	Tuning Compensators
	Automated Tuning of Compensators
	Summary

	Customization
	Preliminaries
	Terminology
	Property and Preferences Hierarchy
	Ways to Customize Plots

	Setting Toolbox Preferences
	Toolbox Preferences Editor
	Overview of the Toolbox Preferences Editor
	Opening the Toolbox Preferences Editor

	Units Pane
	Other Frequency Units Options
	Other Time Units Options
	Style Pane
	Options Pane
	SISO Tool Pane

	Setting Tool Preferences
	Introduction
	LTI Viewer Preferences Editor
	Opening the LTI Viewer Preference Editor
	Units Pane
	Other Frequency Units Options
	Other Time Units Options
	Style Pane
	Options Pane
	Parameters Pane

	Graphical Tuning Window Preferences Editor
	Opening the Graphical Tuning Window Preferences Editor
	Units Pane
	Other Frequency Units Options
	Time Delays Pane
	Style Pane
	Grids Panel
	Fonts Panel
	Colors Panel

	Options Pane
	Line Colors Pane

	Customizing Response Plot Properties
	Introduction
	Customizing Response Plots Using the Response Plots Property Edi
	Opening the Property Editor
	Overview of Response Plots Property Editor
	Labels Pane
	Limits Pane
	Units Pane
	Style Pane
	Options Pane
	Editing Subplots Using the Property Editor

	Customizing Response Plots Using Plot Tools
	Properties You Can Customize Using Plot Tools
	Opening and Working with Plot Tools
	Example of Changing Line Color Using Plot Tools

	Customizing Response Plots from the Command Line
	Overview of Customizing Plots from the Command Line
	When to Customize Plots from the Command Line
	How to Customize Plots from the Command Line
	Example of Changing Bode Plot Units from the Command Line

	Obtaining Plot Handles
	Obtaining Plot Options Handles
	Overview of Plot Options Handles
	Retrieving a Handle
	Creating a Handle
	Which Properties Can You Modify?

	Examples of Customizing Plots from the Command Line
	Manipulating Plot Options Handles
	Changing Plot Units
	Create Plots Using Existing Plot Options Handle
	Creating a Default Plot Options Handle
	Using Dot Notation Like a Structure
	Setting Property Pairs in setoptions

	Properties and Values Reference
	Property/Value Pairs Common to All Response Plots
	Bode Plots
	Hankel Singular Values
	Nichols Plots
	Nyquist Charts
	Pole/Zero Maps
	Sigma Plots
	Time Response Plots

	Property Organization Reference

	Customizing Plots Inside the SISO Design Tool
	Overview of Customizing SISO Design Tool Plots
	Root Locus Property Editor
	Labels Pane
	Limits Pane
	Options Pane

	Open-Loop Bode Property Editor
	Labels Pane
	Limits Pane

	Open-Loop Nichols Property Editor
	Labels Pane
	Limits Pane

	Prefilter Bode Property Editor

	Design Case Studies
	Design Yaw Damper for Jet Transport
	Overview of this Case Study
	Creating the Jet Model
	Computing Open-Loop Eigenvalues
	Open-Loop Analysis
	Root Locus Design
	Washout Filter Design

	Hard-Disk Read/Write Head Controller
	Overview of this Case Study
	Creating the Read/Write Head Model
	Model Discretization
	Adding a Compensator Gain
	Adding a Lead Network
	Design Analysis

	LQG Regulation: Rolling Mill Case Study
	Overview of this Case Study
	Process and Disturbance Models
	Model Data for the x-Axis
	Model Data for the y-Axis

	LQG Design for the x-Axis
	LQG Design for the y-Axis
	Cross-Coupling Between Axes
	MIMO LQG Design

	Kalman Filtering
	Overview of this Case Study
	Discrete Kalman Filter
	Steady-State Design
	Time-Varying Kalman Filter
	Time-Varying Design
	References

	Reliable Computations
	Scaling State-Space Models
	Why Scaling Is Important
	When to Scale Your Model
	Manually Scaling Your Model
	Opening the Scaling Tool GUI
	Specifying the Frequency Axis Limits in the Scaling Tool GUI
	Specifying the Frequency Band for Maximum Accuracy in the Scalin
	Saving the Scaling in the Scaling Tool GUI

	Using the SISO Design Tool and the LTI Viewer
	SISO Design Tool
	SISO Design Tool Overview
	Opening the SISO Design Tool
	Using the SISO Design Task Node
	The SISO Design Task Node
	SISO Design Task Node Menu Bar
	File Menu Options
	Edit Menu Options
	Help
	Buttons Available from Any Pane

	Using the SISO Design Task in the Controls & Estimation Tools Ma
	Architecture
	Block Diagram Structure Modifications
	Loop Configuration
	Model Import
	Sample Times for Continuous/Discrete Conversions
	Multimodel Configuration

	Compensator Editor
	Graphical Tuning
	Configuring Design Plots for the Graphical Tuning Window
	Selecting New Loops to Tune
	Refocusing on the Graphical Tuning Window

	Analysis Plots
	Customizing Loop Responses
	Adding New Response Plots
	Opening or Changing the Focus to the LTI Viewer

	Automated Tuning
	Stability of an Effective Plant for Automated Tuning
	Generic Work Flow
	Optimization-Based Tuning
	PID Tuning
	Internal Model Control (IMC) Tuning
	LQG Synthesis
	Loop Shaping

	SISO Design Task Graphical Tuning Window
	Using the Graphical Tuning Window Menu Bar
	Overview of the Graphical Tuning Window Menu Bar
	File
	Import
	Export
	Save Session
	Load Session
	Toolbox Preferences
	Print
	Print to Figure
	Close

	Edit
	Undo and Redo
	Tuned Parameters
	SISO Tool Preferences

	View
	Design Plots Configuration
	Closed-Loop Poles
	Design History

	Analysis
	Common Response Plots
	Other Loop Responses

	Tools
	Continuous/Discrete Conversions Using the Sample Time Conversion
	Draw Simulink Diagram
	Automated Tuning

	Window
	Help

	Using the Graphical Tuning Window Toolbar
	Using the Right-Click Menus in the Graphical Tuning Window
	Overview of the Right-Click Menus
	Add Pole/Zero
	Example: Adding a Complex Pair of Poles

	Delete Pole/Zero
	Edit Compensator
	Gain Target
	Show
	Multimodel Display
	Design Requirements
	Design Requirements for the Root Locus
	Example: Adding Damping Ratio Design Requirements
	Design Requirements for Open- and Closed-Loop Bode Diagrams
	Example: Adding Upper Gain Limits
	Design Requirements for Open-Loop Nichols Plots
	Example: Adding a Closed-Loop Peak Gain Design Requirement
	Editing Design Requirements
	Deleting Design Requirements

	Grid
	Full View
	Properties
	Select Compensator
	Status Pane

	LTI Viewer for SISO Design Task Design Requirements
	Overview of LTI Viewer Design Requirements
	Available Design Requirements in the LTI Viewer
	Example: Time Domain Requirement

	LTI Viewer
	LTI Viewer Overview
	Using the Right-Click Menu in the LTI Viewer
	Overview of the Right-Click Menu
	Setting Characteristics of Response Plots
	Step Response
	Impulse Response
	Bode Diagram
	Bode Magnitude
	Nyquist Diagrams
	Nichols Charts
	Singular Values
	Pole/Zero and I/O Pole/Zero

	Adding Design Requirements
	Choosing Step Response Specifications

	Importing, Exporting, and Deleting Models in the LTI Viewer
	Importing Models
	Exporting Models
	Deleting Models

	Selecting Response Types
	Methods for Selecting Response Types
	Right Click Menu: Plot Type
	Plot Configurations Window
	Line Styles Editor
	Setting Preferences
	Ordering Properties

	Analyzing MIMO Models
	Overview of Analyzing MIMO Models
	Array Selector
	Arrays
	Selection Criteria

	I/O Grouping for MIMO Models
	Selecting I/O Pairs

	Customizing the LTI Viewer
	Overview of Customizing the LTI Viewer
	LTI Viewer Preferences Editor

	Index

	tables
	Dynamic System Model Control Design Blocks
	Static Model Control Design Blocks
	Optional Unit Conversions for Response Plots
	Frequency Units Options
	Time Units Options
	Frequency Units Options
	Frequency Units Options
	Time Units Options
	Frequency Units Options
	Frequency Units Options
	Time Units Options
	Response Characteristic Options for Response Plots
	Functions That Return the Plot Handle
	Functions for Creating Plot Options Handles
	Title
	X Label
	Y Label
	Tick Label
	Grid and Axis Limits
	I/O Grouping
	Input Labels
	Output Labels
	Input/Output Visible
	Available Options
	Available Options
	Available Options
	Available Options
	Available Options
	Available Options
	Available Options

